Answer: a) 
b) 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
a) Mass of Ba= 66.06 g
Mass of Cl = 34.0 g
Step 1 : convert given masses into moles.
Moles of Ba =
Moles of Cl = \frac{\text{ given mass of Cl}}{\text{ molar mass of Cl}}= \frac{34g}{35.5g/mole}=0.96moles[/tex]
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Ba =
For O =
The ratio of Ba: Cl= 1:2
Hence the empirical formula is 
b) Mass of Bi= 80.38 g
Mass of O= 18.46 g
Mass of H = 1.16 g
Step 1 : convert given masses into moles.
Moles of Bi =
Moles of O=
Moles of H=
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Bi=
For O =
For H=
The ratio of Bi: O: H= 1:3: 3
Hence the empirical formula is 
Answer:
Zn°(s) + Fe⁺²(aq) => Zn⁺²(aq) + Fe°(s)
Explanation:
Molecular Equation:
Zn°(s) + Fe(NO₃)₂(aq) => Zn(NO₃)₂(aq) + Fe°(s)
Ionic Equation:
Zn°(s) + Fe⁺²(aq) + 2NO₃⁻(aq) => Zn⁺²(aq) + 2NO₃⁻(aq) + Fe°(s)
Net Ionic Equation: => Drop NO₃⁻ as spectator ion
Zn°(s) + Fe⁺²(aq) => Zn⁺²(aq) + Fe°(s)
At STP, also known as standard temperature and pressure, 1 mole of a gas occupies 22.4 L. Since we are given with the volume of 6.3L, we calculate the amount of gas in mol.
n = (6.3L)/ (22.4L/mol) = 0.28125 mol
We are given with the mass of 6.7 g. Therefore, the molar mass or molecular weight of the gas is equal to,
6.7g/0.28125 mol = 23.82 g/mol
Answer:
6
Explanation:
You will see H6 and the H stands for helium and the 6 is how many of that atom is there
Answer:
The disadvantages of each of the given model of electron configuration have been mentioned below:
1). Dot Structures - They take up excess space as they do not display the electron distribution in orbitals.
2). Arrow and line diagrams make the counting of electrons and take up too much space.
3). Written Configurations do not display the electron distribution in orbitals and help in lose counting of electrons easily.