answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
2 years ago
6

At which temperature do the molecules of an ideal gas have 3 times the kinetic energy they have at 32of?

Chemistry
1 answer:
algol [13]2 years ago
7 0

Answer:

  • 820 K

Explanation:

As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.

  • KE α T.

Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>

So, you must just convert the given temperature, 32°F, to kelvin scale.

You can do that in two stages.

  • First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80

  • Second, convert 0°C to kelvin:

         T (K) = T(°C) + 273.15 K= 273.15 K

Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K

Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.

You might be interested in
Larisa pumps up a soccer ball until it has a gauge pressure of 61 kilopascals. The volume of the ball is 5.2 liters. The air tem
Nuetrik [128]
<h3>Answer:</h3>

B.  0.33 mol

<h3>Explanation:</h3>

We are given;

Gauge pressure, P = 61 kPa (but 1 atm = 101.325 kPa)

                               = 0.602 atm

Volume, V = 5.2 liters

Temperature, T = 32°C, but K = °C + 273.15

thus, T = 305.15 K

We are required to determine the number of moles of air.

We are going to use the concept of ideal gas equation.

  • According to the ideal gas equation, PV = nRT, where P is the pressure, V is the volume, R is the ideal gas constant, (0.082057 L.atm mol.K, n is the number of moles and T is the absolute temperature.
  • Therefore, to find the number of moles we replace the variables in the equation.
  • Note that the total ball pressure will be given by the sum of atmospheric pressure and the gauge
  • Therefore;
  • Total pressure = Atmospheric pressure + Gauge pressure  

       We know atmospheric pressure is 101.325 kPa or 1 atm

Total ball pressure = 1 atm + 0.602 atm

                               = 1.602 atm

That is;

PV = nRT

n = PV ÷ RT

therefore;

n = (1.602 atm× 5.2 L) ÷ (0.082057 × 305.15 K)

  = 0.3326 moles

  = 0.33 moles

Therefore, there are 0.33 moles of air in the ball.

4 0
2 years ago
Identify the functional groups attached to the benzene ring as either, being electron withdrawing, electron donating, or neither
Dominik [7]
-OH is elctron donating  -C=-N is electron withdrawing  -O-CO-CH3 is electron withdrawing  -N(CH3)2 is electron donating  -C(CH3)3 is electron donating  -CO-O-CH3 is electron withdrawing  -CH(CH3)2 is electron donating  -NO2 is electrong withdrawing  -CH2
8 0
2 years ago
An organic acid is composed of carbon (45.45%), hydrogen (6.12%), and oxygen (48.44%). Its molar mass is 132.12 g/mol. Determine
Andreas93 [3]

Answer:

C4H8O4

Explanation:

To determine the molecular formula, first, let us obtain the empirical formula. This is illustrated below:

From the question given, we obtained the following information:

C = 45.45%

H = 6.12%

O = 48.44%

Divide the above by their molar mass

C = 45.45/12 = 3.7875

H = 6.12/1 = 6.12

O = 48.44/16 = 3.0275

Divide by the smallest

C = 3.7875/3.0275 = 1

H = 6.12/3.0275 = 2

O = 3.0275/3.0275 = 1

The empirical formula is CH2O

The molecular formula is given by [CH2O]n

[CH2O]n = 132.12

[12 + (2x1) + 16]n = 132.12

30n = 132.12

Divide both side by the coefficient of n i.e 30

n = 132.12/30 = 4

The molecular formula is [CH2O]n = [CH2O]4 = C4H8O4

7 0
2 years ago
Read 2 more answers
The ph of a solution that contains 0.818 m acetic acid (ka = 1.76 x 10-5) and 0.172 m sodium acetate is __________.
crimeas [40]
PH is calculated using <span>Handerson- Hasselbalch equation,

                                      pH  =  pKa  +  log [conjugate base] / [acid]

Conjugate Base  =  Acetate (CH</span>₃COO⁻)
Acid                    =  Acetic acid (CH₃COOH)
So,
                                      pH  =  pKa  +  log [acetate] / [acetic acid]

We are having conc. of acid and acetate but missing with pKa,
pKa is calculated as,

                                     pKa  =  -log Ka
Putting value of Ka,
                                     pKa  =  -log 1.76 × 10⁻⁵

                                     pKa  =  4.75
Now,
Putting all values in eq. 1,
                     
                                     pH  =  4.75 + log [0.172] / [0.818]

                                     pH  =  4.072
4 0
2 years ago
Complete combustion of a compound containing hydrogen and carbon produced 2.641 g of carbon dioxide and 1.442 grams of water as
klio [65]

  The empirical   formula  of hydrocarbon is C₃H₈

The  molecular formula of hydrocarbon   is C₆H₁₆


<u><em> Empirical  formula  calculation</em></u>

Hydrocarbon  contain  carbon and hydrogen

  Step 1:  find the  mass  carbon (C) in carbon dioxide (CO₂)  and hydrogen (H )  in water

mass of  of element = molar mass  of element/ molar mass molecule x total mass of    molecule

From periodic table the molar mass  of C =12,    for CO₂ = 12+( 16 x2) =44 g/mol,     for H = 1.00 g/mol,    for H₂O = (2 x1)+16 = 18 g/mol

mass of C = 12/44 x 2.641 =0.7203 g

since there are 2 atom  of H in H₂O the molar mass of H = 1 x2 = 2 g/mol

mass of H  is therefore =  2/18 x 1.442 =0.1602 g


Step 2:  find the moles of C and H

moles = mass÷ molar mass

moles of C = 0.7203 g÷ 12 g/mol = 0.060  moles

moles of H  =  0.1602÷ 1 g/mol = 0.1602 moles


Step 3: find the mole ratio  of C and H by dividing  each  mole by smallest mole ( 0.06)

for C = 0.06/0.06 =1

  For H = 0.1602/0.06 =2.67

multiply   by 3  to remove the decimal

For C = 1 x3 =3

For H = 2.67 x3 =8

therefore the empirical formula = C₃H₈


<u><em>The molecular formula calculation</em></u>

[C₃H₈]n  = 88.1 g/mol

[12 x 3)+( 1 x8)]n =88.1 g/mol

44 n = 88.1

divide both side by 44

n=2

therefore [C₃H₈]₂   = C₆H₁₆



7 0
2 years ago
Read 2 more answers
Other questions:
  • CH3CN major species present when dissolved in water
    6·2 answers
  • Which statement describes characteristics of a 0.01 M KOH(aq) solution? 1. The solution is acidic with a pH less than 7. 2. The
    11·1 answer
  • The diagrams show gases that are stored in two separate but similar containers.
    9·2 answers
  • Three units put together in different patterns essentially make
    12·2 answers
  • In every balanced chemical equation, each side of the equation has the same number of _____.
    14·2 answers
  • What volume of water must be added to 11.1 mL of a pH 2.0 solution of HNO3 in order to change the pH to 4.0? A) 11.1 mL B) 89 mL
    15·1 answer
  • Gordon wrote this passage about mechanical waves for his physics class. But he got most of his facts mixed up. Only one sentence
    6·2 answers
  • Biacetyl, the flavoring that makes margarine taste "just like butter," is extremely stable at room temperature, but at 200°C it
    10·1 answer
  • A 0.080L solution of Ca(OH)2 is neutralized by 0.0293L of a 3.58 M H2CrO4 solution. What is the concentration of the Ca(OH)2 sol
    5·1 answer
  • Which of the following factors used in a dimensional analysis calculation have a finite number of significant figures (in other
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!