Explanation:
The given data is as follows.
Moles of propylene = 100 moles,
= 300 K
= 800 K,
,
of propylene = 100 J/mol
Now, we assume the following assumptions:
Since, it is a compression process therefore, work will be done on the system. And, work done will be equal to the heat energy liberating without any friction.
W = 

= 
= 5 MJ
Thus, we can conclude that a minimum of 5 MJ work is required without any friction.
Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³
Answer:
0.07906687 amu
Explanation:
For Boron ₅B¹¹, the number of protons is 5 and the mass is 11. The mass is the number of protons plus the number of neutrons, so:
neutrons = 11 - 5 = 6
The mass of an atom is concentrated in the nucleus, so it is the mass of the protons + the mass of the neutrons. The mass of 1 proton is 1.00727647 amu/proton, and the mass of 1 neutron: 1.00866492 amu/neutron, so for the element given the theoretical mass (mt) is:
mt = 5* 1.00727647 amu/proton + 6*1.00866492 amu/neutron
mt = 11.08837187 amu
The mass defect (md) is the theorical mass less the real mass:
md = 11.08837187 - 11.009305
md = 0.07906687 amu