Answer:
Explanation:
In spontaneous reaction , there is decrease in Gibb's free energy .( Δ G is negative ). Out of given reaction , following reactions have negative Δ G so they are spontaneous.
C ₂ H ₄ + H ₂ Rh ( I ) −−−→ C ₂ H ₆ , Δ G = − 150.97 kJ / mol
C ₆ H₁₃O₉ P + ATP ⟶ C ₆ H₁₄ O₁₂ P₂ + ADP , Δ G = − 14.2 kJ / mol
Answer: The millimoles of sodium carbonate the chemist has added to the flask are 256
Explanation:
Molarity is defined as the number of moles dissolved per liter of the solution.
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of
solution = 1.42 M
Volume of solution = 180.0 mL
Putting values in equation 1, we get:

Thus the millimoles of sodium carbonate the chemist has added to the flask are 256.
Answer:
C4H8O4
Explanation:
To determine the molecular formula, first, let us obtain the empirical formula. This is illustrated below:
From the question given, we obtained the following information:
C = 45.45%
H = 6.12%
O = 48.44%
Divide the above by their molar mass
C = 45.45/12 = 3.7875
H = 6.12/1 = 6.12
O = 48.44/16 = 3.0275
Divide by the smallest
C = 3.7875/3.0275 = 1
H = 6.12/3.0275 = 2
O = 3.0275/3.0275 = 1
The empirical formula is CH2O
The molecular formula is given by [CH2O]n
[CH2O]n = 132.12
[12 + (2x1) + 16]n = 132.12
30n = 132.12
Divide both side by the coefficient of n i.e 30
n = 132.12/30 = 4
The molecular formula is [CH2O]n = [CH2O]4 = C4H8O4
Light acts as a wave so when you burn a certain element it generates a specific wavelength which represents a specific color light. ^-^