Answer:
The molar mass of the protein is 12982.8 g/mol.
Explanation:
The osmptic pressure is given by:
π=MRT
Where,
M: is molarity of the solution
R: the ideal gas constant (0.0821 L·atm/mol·K)
T: the temperature in kelvins
Hence, we look for molarity:

= =5.584×10⁻³mol/l
As we have 2 ml of solution, we can get the moles quantity:
Moles of protein: 5.584×10⁻³
×2ml=1.117×10⁻⁵mol
Finally, the moles quantity is the division between the mass of the protein and the molar mass of the protein, so:
Moles=Mass/Molar mass
Molar mass= Mass/Moles=
=12982.8 g/mol
Given that,
Temperature, T = 1500 K
Wavelength, 
To find,
The energy of one photon of this light.
Solution,
We know that, the energy of a photon is given by the formula as follows :

So, the required energy is
.
The force that holds protons and neutrons together is too strong to overcome.
<h3>Explanation</h3>
Consider the location of the particles in an atom.
- Electrons are found outside the nucleus.
- Protons and neutrons are found within the nucleus.
Protons carry positive charges and repel each other. The nucleus will break apart without the strong force that holds the protons and neutrons together. This force is much stronger than the attraction between the nucleus and the electrons. X-rays are energetic enough for removing electrons from an atom. However, you'll need a collider to remove protons from a stable nucleus. You could well have ionized the atom with all that energy.
Also, changing the number of protons per nucleus will convert the halogen atom to an atom of a different element. Rather than making the halogen negative, removing a proton will convert the halogen atom to the negative ion of a different element.
The model would look something like the image below.
There would be a <em>central nucleus</em> containing <em>20 protons</em> and <em>20 neutrons</em>.
Surrounding the nucleus would be four concentric rings (energy levels) containing <em>20 electron</em>s.
Going out from the nucleus, the number of electrons in each ring would
be <em>2, 8, 8, 2</em>.
Answer:
Al
Explanation:
4 Al + 3 O₂ → 2 Al₂O₃
You need to figure out which one has the smaller mole ratio. Convert both substances from grams to moles.
(10.0 g Al)/(26.98 g/mol) = 0.3706 mol Al
(19.0 g O₂)/(32.00 g/mol) = 0.5938 mol O₂
Now, use the mole ratios of reactant to product to see which substance produces the least amount of product.
(0.3706 mol Al) × (2 mol Al₂O₃/4 mol Al) = 0.1853 mol Al₂O₃
(0.5938 mol O₂) × (2 mol Al₂O₃/3 mol O₂) = 0.3958 mol Al₂O₃
Since aluminum produces the least amount of product, this is the limiting reagent.