The compound that could serve as a reactant in the neutralization reaction is H2SO4
Explanation
Neutralization reaction occur between an acids and a base. H2SO4 ( sulfuric acid) is a strong acid. It can be neutralized by strong base such as NaOH ( sodium hydroxide)
Example of neutralization reaction is
2NaOH + H2SO4 → Na2SO4 + 2H2O
Answer:

For temperatures higher than 533.49 K we will see a spontaneous reaction, and for temperatures lower than that the reaction will not be spontaneous.
Explanation:
When are chemical reactions spontaneous? To find out we need to look at the reaction's change in Gibbs Free energy:

When this is greater than zero, the reaction isn't spontaneous, when it is less than zero, we have a spontaneous reaction. The reaction must then change from spontaneous to non spontaneous when
. If we insert that into our equation we get:

That is the temperature at which the reaction's spontaneity will change, plugging in our values we find:

At that temperature we have
.
Now, at a temperature greater than this one, the entropy term in our equation for the Gibbs' free energy of reaction will take over, and make
, thus the reaction will be spontaneous.
On the other hand, if we lower the temperature, we will have a smaller entropy term, and we will have:
. That is, the reaction will not be spontaneous. Therefore for temperatures higher than 533.49 K we will see a spontaneous reaction, and for temperatures lower than that the reaction will not be spontaneous.
It is scandium or titanium iron chroniclemium vanadium manganese
Answer:
A. Optical fibers transmit light signals in high-speed communications.
Explanation:
You didn't include the image, but it probably showed light bouncing off the sides as in the diagram below.
It demonstrates how optical fibers transmit light signals in high-speed communications.
B is wrong. Satellites communicate by radio waves.
C is wrong. Solar cells convert light energy to
D is wrong. Power plants transmit electrical energy to homes through copper wires.
Answer:
Mg₃N₂
Explanation:
The empirical formula of a chemical compound is defined as the simplest positive integer ratio of atoms present in a compound. Using molecular mass of Mg (24,305g/mol) and mass of nitrogen (14,006g/mol), moles of each element are:
0,73g × (1mol / 24,305g) = 0,03 moles of Mg
0,28g × (1mol / 14,006g) = 0,02 moles of N
Dividing each value in 0,01 to obtain natural numbers:
0,03 moles of Mg / 0,01 = 3
0,02 moles of N / 0,01 = 2.
Thus, empirical formula is: <em>Mg₃N₂</em>
<em></em>
I hope it helps!