Momentum = Mass x Velocity
80kg Runner: 80 x 2.45 = 196 Kg m/s
65kg Runner: 65 x 3= 195 Kg m/s
The 80kg runner has a greater momentum
The way to working out the numbers is to increase the measure of HNO3 required by the molarity to discover what number of moles you require: 0.115. You ought to have the capacity to make sense of the recipe weight H is 1, N is 14, O is 16. The result of the quantity of moles duplicated by the recipe weight ought to give an esteem in grams. You can utilize the thickness to change over to a volume of HNO3 to add to the right volume of water.
The characteristics of an Arrhenius acid was the acid donates H+ when it is in the aqueous solution, whether the solution is acid or base. If the solution is a acid, then be H+ builds up and increase its thing. The pH level for acid solution is the scale from 1-6. Even though the ph scale is lower than the base, the color also varies. It also applies to the base, too.
Answer : The concentration of
in the solution is, 
Explanation :
First we have to calculate the volume of aqueous solution that is water.
Density of water = 1.00 g/mL
Mass of water = 2400 g

Now we have to calculate the concentration of ammonia solution.
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Molar mass of
= 17 g/mole
Now put all the given values in this formula, we get:

Therefore, the concentration of
in the solution is, 
Under standard temperature and pressure conditions, it is known that 1 mole of a gas occupies 22.4 liters.
From the periodic table:
molar mass of oxygen = 16 gm
molar mass of hydrogen = 1 gm
Thus, the molar mass of water vapor = 2(1) + 16 = 18 gm
18 gm of water occupies 22.4 liters, therefore:
volume occupied by 32.7 gm = (32.7 x 22.4) / 18 = 40.6933 liters