Two electrons is your answer glad to help!
Answer:
The answer is 465.6 mg of MgI₂ to be added.
Explanation:
We find the mole of ion I⁻ in the final solution
C = n/V -> n = C x V = 0.2577 (L) x 0.1 (mol/L) = 0.02577 mol
But in the initial solution, there was 0.087 M KI, which can be converted into mole same as above calculation, equal to 0.02242 mol.
So we need to add an addition amount of 0.02577 - 0.02242 = 0.00335 mol of I⁻. But each molecule of MgI₂ yields two ions of I⁻, so we need to divide 0.00335 by 2 to find the mole of MgI₂, which then is 0.001675 mol.
Hence, the weight of MgI₂ must be added is
Weight of MgI₂ = 0.001675 mol x 278 g/mol = 0.4656 g = 465.6 mg
Flame colors are produced from the movement of the electrons in the metal ions present in the compounds. When you heat it, the electrons gain energy and can jump into any of the empty orbitals at higher levels Each of these jumps involves a specific amount of energy being released as light energy, and each corresponds to a particular color. As a result of all these jumps, a spectrum of colored lines will be produced. The color you see will be a combination of all these individual colors.
Answer:
293.15 K.
Explanation:
It is given that, the room temperature is 20 degrees Celsius.
We need to convert this temperature into kelvin.
The conversion from degrees Celsius to Kelvin is as follows :

We have, 
So,

So, the room temperature is 293.15 kelvin.
An example.
water is H2O
2 hydrogen, 1 oxygen
so the number to the right means how much of what is on the left.
so it looks like 2, because C2, but look at the 3 at the beginning. that means
3 (c2h4)
so 6 carbons, 12 hydrogen
the ratio of c2 to h4 doesn't change it's always 1:2.
but the 3 at the front is a different number relating to how much you have