The density of a substance can simply be calculated by
dividing the mass by the volume:
density = mass / volume
Therefore calculating for the density since mass and volume
are given:
density = 46.0 g / 34.6 mL
density = 1.33 g / mL
The balanced chemical equation that represents the reaction is as follows:
<span>SrBr2(aq) + 2AgNO3(aq) → Sr(NO3)2(aq) + 2AgBr(s)
</span>
From the periodic table:
mass of silver = 108 grams
mass of bromine = 80 grams
molar mass of silver bromide = 108 + 80 = 188 grams
number of moles = mass / molar mass
number of moles of produced precipitate = 3.491/188 = 0.018 moles
From the balanced equation:
1 mole of strontium bromide produces 2 moles of silver bromide. Therefore, to calculate the number of moles of <span>strontium bromide that produces 0.018 moles of silver bromide, you will just do a cross multiplication as follows:
amount of </span><span>strontium bromide = (0.018x1) / 2 = 9.28 x 10^-3 moles</span>
Answer:
x means unknown it is an unknown value.
For example if you have 2 x you have 2 u know values.
Explanation:
If you want us to explain it further please provide a picture.
Answer:
The correct answer is is option B
b. 93.3 g
Explanation:
SEE COMPLETE QUESTION BELOW
Hydrogen chloride gas can be prepared by the following reaction: 2NaCl(s) + H2SO4(aq) → 2HCl(g) + Na2SO4(s)
How many grams of HCl can be prepared from 2.00 mol H2SO4 and 2.56 mol NaCl?
a. 7.30 g
b. 93.3 g
c. 146 g
d. 150 g
e. 196 g
CHECK THE ATTACHMENT FOR STEP BY STEP EXPLANATION
Answer:
At equal concentration of HBCG and BCG^-, the colour is green. This colour first appears at pH = 3.8
Explanation:
HBCG is an indicator that is prepared by dissolving the solid in ethanol.
Since
Ka=[BCG−][H3O+][HBCG]When [BCG-] = [HBCG], then Ka = [H3O+].
If pH = 3.8
Ka= [H3O+] = -antilog pH = -antilog (3.8)
Ka= 1.58 ×10^-4