answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
2 years ago
14

Which of these scenarios involve a reaction that is at equilibrium

Chemistry
2 answers:
Ber [7]2 years ago
5 0

The correct answer is, the amount of products and reactants is constant.

Tasya [4]2 years ago
3 0
Reaction is producing more reactants than products
You might be interested in
Exactly 1.0 mol N2O4 is placed in an empty 1.0-L container and allowed to reach equilibrium described by the equation N2O4(g) 2N
Amanda [17]

Answer : The correct option is, (a) 0.44

Explanation :

First we have to calculate the concentration of N_2O_4.

\text{Concentration of }N_2O_4=\frac{\text{Moles of }N_2O_4}{\text{Volume of solution}}

\text{Concentration of }N_2O_4=\frac{1.0moles}{1.0L}=1.0M

Now we have to calculate the dissociated concentration of N_2O_4.

The balanced equilibrium reaction is,

                             N_2O_4(g)\rightleftharpoons 2NO_2(aq)

Initial conc.           1.0 M          0

At eqm. conc.     (1.0-x) M    (2x) M

As we are given,

The percent of dissociation of N_2O_4 = \alpha = 28.0 %

So, the dissociate concentration of N_2O_4 = C\alpha=1.0M\times \frac{28.0}{100}=0.28M

The value of x = C\alpha = 0.28 M

Now we have to calculate the concentration of N_2O_4\text{ and }NO_2 at equilibrium.

Concentration of N_2O_4 = 1.0 - x  = 1.0 - 0.28 = 0.72 M

Concentration of NO_2 = 2x = 2 × 0.28 = 0.56 M

Now we have to calculate the equilibrium constant for the reaction.

The expression of equilibrium constant for the reaction will be:

K_c=\frac{[NO_2]^2}{[N_2O_4]}

Now put all the values in this expression, we get :

K_c=\frac{(0.56)^2}{0.72}=0.44

Therefore, the equilibrium constant K_c for the reaction is, 0.44

8 0
2 years ago
How does the equilibrium change to counter the removal of A in this reaction? A + B ⇌ AB
atroni [7]

 To counter the removal of A  the  equilibrium  change by <u>s</u><em>hifting toward the left</em>


<em>          </em><u><em>explanation</em></u>

<u><em> </em></u>If the  reaction  is at equilibrium  and we   alter  the condition a new equilibrium  state   is created

<u><em>   </em></u>The  removal  of   A led to the shift of equilibrium  toward the left since  it led to  less  molecules  in reactant side  which favor the backward  reaction.(  equilibrium  shift to the left)

6 0
2 years ago
Read 2 more answers
A student is given a sample of a blue copper sulfate hydrate. He weighs the sample in a dry covered porcelain crucible and got a
Nata [24]

Answer:

There are present 5,5668 moles of water per mole of CuSO₄.

Explanation:

The mass of CuSO₄ anhydrous is:

23,403g - 22,652g = 0,751g.

mass of crucible+lid+CuSO₄ - mass of crucible+lid

As molar mass of CuSO₄ is 159,609g/mol. The moles are:

0,751g ×\frac{1mol}{159,609g} = 4,7052x10⁻³ moles CuSO₄

Now, the mass of water present in the initial sample is:

23,875g - 0,751g - 22,652g = 0,472g.

mass of crucible+lid+CuSO₄hydrate - CuSO₄ - mass of crucible+lid

As molar mass of H₂O is 18,02g/mol. The moles are:

0,472g ×\frac{1mol}{18,02g} = 2,6193x10⁻² moles H₂O

The ratio of moles H₂O:CuSO₄ is:

2,6193x10⁻² moles H₂O / 4,7052x10⁻³ moles CuSO₄ = 5,5668

That means that you have <em>5,5668 moles of water per mole of CuSO₄.</em>

I hope it helps!

5 0
2 years ago
Mr. Rutherford's chemistry class was collecting data in a neutralization study. Each group had 24 test tubes to check each day f
ycow [4]
I’m pretty sure it is A at least that’s what we did at our school to test this
6 0
2 years ago
A 0.1025-g sample of copper metal is dissolved in 35 ml of concentrated hno3 to form cu2 ions and then water is added to make a
GalinKa [24]

Molarity is defined as number of moles of solute in 1 L of solution.

Here, 0.1025 g of Cu is reacted with 35 mL of HNO_{3} to produced Cu^{2+} ions.

The balanced reaction will be as follows:

Cu+3HNO_{3}\rightarrow Cu(NO_{3})_{2}+NO_{2}+H_{2}O

From the above reaction, 1 mole of Cu produces 1 mole of Cu^{2+}, convert the mass of Cu into number of moles as follows:

n=\frac{m}{M}

molar mass of Cu is 63.55 g/mol thus,

n=\frac{0.1025 g}{63.55 g/mol}=0.0016 mol

Now, total molarity of solution, after addition of water is 200 mL or 0.2 L can be calculated as follows:

M=\frac{n}{V}=\frac{0.0016 mol}{0.2 L}=0.008 mol/L=0.008 M

Thus, molarity of Cu^{2+} is 0.008 M.



7 0
2 years ago
Other questions:
  • What is effective nuclear charge of S2- and S? Does the Zeff differs from ions and atoms of the same element.
    14·2 answers
  • A solid is 5 cm tall 3 cm wide and 2 cm thick it has a mass of 129 g what is the density
    7·2 answers
  • How many grams of iki would it take to obtain a 100 ml solution of 0.300 m iki? how many grams of iki would it take to create a
    13·1 answer
  • Humans affect Earth in many ways. The use of fossil fuels, the clear-cutting of forests, and controlled burns can affect the car
    8·2 answers
  • Identify the precipitate (if any) that forms when nach3coo (also written as nac2h3o2) and hcl are mixed. express your answer as
    13·2 answers
  • In an ionic bond:
    15·2 answers
  • How many moles of MgCl2 are there in 319 g of the compound?
    5·1 answer
  • If a runners power is 400 w as she runs, how much chemical energy dose she convert into other forms in 10.0 minuets?
    13·1 answer
  • From the options provided for each element below, choose the properties that it may have based on its location in the periodic t
    10·2 answers
  • Determine whether the statement is true or false, and why? “Climate change could cause many habitats to be destroyed, leading to
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!