Answer:
29.98kg
Explanation:
12.0 gallons * (3.78541178 liters/gallon) * (1000 mL/liter) * (0.66 g/mL) * (1 kg/1000 g) = 29.98 kg
The container with chalk powder will contain the least amount of water, because it absorbs water, but the containers with honey and cocunut oil will conserve their amount of water, because they will prevent the water evaporation (especially cocunut oil because it will be on the top side of the container).
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
When solid aluminum metal is reacted with diatomic chlorine gas, solid aluminum chloride is formed. This reaction is an example of synthesis or chemical combination in which two elements, aluminum and chlorine combine to form a new compound aluminum chloride.
Word equation: Aluminum (s)+ Chlorine (g)---> Aluminum chloride(s)
Molecular formula of the product formed is
.
Therefore the balanced chemical equation representing the reaction of solid aluminum with gaseous dichlorine can be represented as,

Answer:
Conversion of kinetic energy to potential energy (chemo mechanical energy)
In the state of rest, the rubber is a tangled mass of long chained cross-linked polymer that due to their disorderliness are in a state of increased entropy. By pulling on the polymer, the applied kinetic energy stretches the polymer into straight chains, giving them order and reducing their entropy. The stretched rubber then has energy stored in the form of chemo mechanical energy which is a form of potential energy
Conversion of the stored potential energy in the stretched to kinetic energy
By remaining in a stretched condition, the rubber is in a state of high potential energy, when the force holding the rubber in place is removed, due to the laws of thermodynamics, the polymers in the rubber curls back to their state of "random" tangled mass releasing the stored potential energy in the process and doing work such as moving items placed in the rubber's path of motion such as an object that has weight, w then takes up the kinetic energy 1/2×m×v² which can can result in the flight of the object.
Explanation: