Answer:
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)
Explanation:
<u>Step 1:</u> Data given
A mixture of three gases has a total pressure of 1380 mm Hg (=1.81579 atm) at 298 K
Moles of CO2 = 1.27 moles
Moles of CO = 3.04 moles
Moles of Ar = 1.50 moles
<u>Step 2:</u> Calculate total number of moles
Total number of moles = n(CO2)+ n(CO)+ n(Ar) = 1.27 mol+ 3.04 mol+ 1.50 mol = 5.81 moles
<u>Step 3:</u> Calculate mol fraction Ar
Mol fraction Ar = 1.50 mol/5.81 mol = 0.258
<u>Step 4</u>: Calculate partial pressure
1380 mm Hg * 0.258 moles Ar = 356.04 mm Hg = 0.4685 atm
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)
Answer:
C
green traveled les distance but still ended up in the same location as red
Le Chatelier's principle simply explains how equilibria change as you change the conditions of a reaction. If you have a reaction that is at equilibrium lets say (A + 2B <--> C + D) by removing C or D we can drive the reaction forward and products more products. I can provide a more in-depth description if needed.
Answer:
1. Hot water
2. A pile of wood shavings
Explanation:
Sugar can dissolve more quickly in hot water than in cold water because there is more energy in hot water molecules. Because they are moving faster, they have more energy to break the bonds that hold sugar together. There is also more energy available to break the hydrogen bonds that hold water together.
Wood shavings have a greater contact surface than the solid hunk of wood, which is why they have a higher calorific value and then they will catch fire more easily.