<h3><u>Answer;</u></h3>
1. In the light reactions, light energy is used to oxidize H2O to O2.
2. The electrons derived from this oxidation reaction in the light reactions are used to reduce NADP+ to NADPH.
3. The Calvin cycle oxidizes the light-reactions product NADPH to NADP+.
4. The electrons derived from this oxidation reaction in the Calvin cycle are used to reduce CO2 to G3P.
<h3><u>Explanation;</u></h3>
- <em><u>In the light reactions, light energy is used to remove electrons from (oxidize) water, producing O2 gas. These electrons are ultimately used to reduce NADP+ to NADPH.
</u></em>
- In the Calvin cycle, NADPH is oxidized back to NADP+ (which returns to the light reactions). The electrons released by the oxidation of NADPH are used to reduce three molecules of CO2 to sugar (G3P), which then exits the Calvin cycle.
- As ATP and NADPH are used in the Clavin cycle, they produce ADP and NADP+, respectively, which are returned to the light reactions so that more ATP and NADPH can be formed.
1.5 metres is the length of the tape. Hope this helps :)
The two strands must be separated like the two sides of a zipper, by breaking the weak hydrogen bonds that link the paired bases.
<u>Explanation:</u>
- A double helix structure formed by two polypeptide chains is separated like the two sides of a zipper. A zipper is formed by breaking the weak hydrogen bonds that link the paired bases. During replication, an enzyme "Helicase" travels down the DNA and splits the chain and it forms 2 separate strands.
- The two DNA strand which has the same sequence must be separated like the two sides of a zipper by breaking weak hydrogen bases. During base pair-rule, the strand are unzipped and each strands is copied.
Answer:
There are
17.01
Explanation:
The chemical formula for calcium phosphate is
Ca
3
(PO
4
)
2
. This means that in one mole of calcium phosphate, there are three calcium ions and two phosphate ions.