Answer:
CN^- is a strong field ligand
Explanation:
The complex, hexacyanoferrate II is an Fe^2+ specie. Fe^2+ is a d^6 specie. It may exist as high spin (paramagnetic) or low spin (diamagnetic) depending on the ligand. The energy of the d-orbitals become nondegenerate upon approach of a ligand. The extent of separation of the two orbitals and the energy between them is defined as the magnitude of crystal field splitting (∆o).
Ligands that cause a large crystal field splitting such as CN^- are called strong field ligands. They lead to the formation of diamagnetic species. Strong field ligands occur towards the end of the spectrochemical series of ligands.
Hence the complex, Fe(CN)6 4− is diamagnetic because the cyanide ion is a strong field ligand that causes the six d-electrons present to pair up in a low spin arrangement.
1) we calculate the molar mass of He (helium) and Kr (Krypton).
atomic mass (He)=4 u
atomic mas (Kr)=83.8 u
Therefore the molar mass will be:
molar mass(He)=4 g/mol
molar mass(Kr)=83.8 g/mol.
1) We can find the next equation:
mass=molar mass x number of moles.
x=number of moles of helium
y=number of moles of helium.
(4 g/mol) x +(83.8 g/mol)y=103.75 g
Therefore, we have the next equation:
(1)
4x+83.8y=103.75
2) We can find other equation:
We have 30% helium atoms and 70% Kryptum atoms, therefore we have 30% Helium moles and 70% of Krypton moles.
1 mol is always 6.022 * 10²³ atoms or molecules, (in this case atoms).
Then:
x=number of moles of helium
y=number of moles of helium.
(x+y)=number of moles of our sample.
x=30% of (x+y)
Therefore, we have this other equation:
(2)
x=0.3(x+y)
With the equations(1) and (2), we have the next system of equations:
4x+83.8y=103.75
x=0.3(x+y) ⇒ x=0.3x+0.3y ⇒ x-0.3x=0.3y ⇒ 0.7 x=0.3y ⇒ x=0.3y/0.7
⇒x=3y/7
We solve this system of equations by substitution method.
x=3y/7
4(3y/7)+83.8y=103.75
lower common multiple)7
12y+586.6y=726.25
598.6y=726.25
y=1.21
x=3y/7=3(1.21)/7=0.52
We have 0.52 moles of helium and 1.21 moles of Krypton.
1 mol=6.022 * 10²³ atoms
Total number of particles=(6.022 *10²³ atoms /1 mol) (number of moles of He+ number of moles of Kr).
Total number of particles=6.022 * 10²³ (0.52+1.21)=6.022 * 10²³ (1.73)=
=1.044 * 10²⁴ atoms.
Answer: The sample have 1.044 * 10²⁴ atoms.
Answer: None of the given options show polymer made up of H₂C=CH-CN (Acrylonitrile).
Explanation: Acrylonitrile (H₂C=CH-CN) which is a monomer on self linkage results in a large chain polymer called as
Polyacrylonitrile.
The structure of Polyacrylonitrile is as follow,
--(H₂C-CHCN-)n--Where n shows the number of Acrylonitrile units joined together in the formation of Polyacrylonitrile. This polymerization reaction can take place by different mechanisms including free radical mechanism, acid catalyzed addition or base catalyzed addition reaction.
The polymerization is shown below,
The molality of a solute is equal to the moles of solute per kg of solvent. We are given the mole fraction of I₂ in CH₂Cl₂ is <em>X</em> = 0.115. If we can an arbitrary sample of 1 mole of solution, we will have:
0.115 mol I₂
1 - 0.115 = 0.885 mol CH₂Cl₂
We need moles of solute, which we have, and must convert our moles of solvent to kg:
0.885 mol x 84.93 g/mol = 75.2 g CH₂Cl₂ x 1 kg/1000g = 0.0752 kg CH₂Cl₂
We can now calculate the molality:
m = 0.115 mol I₂/0.0752 kg CH₂Cl₂
m = 1.53 mol I₂/kg CH₂Cl₂
The molality of the iodine solution is 1.53.