Answer: 2s and 2p
Explanation: Carbon is an element with atomic number of 6 and thus contains 6 electrons. The electrons are filled in order of increasing energies and follows Afbau's rule.The electrons are singly filled first in each orbital having same spin, then only pairing occurs. This rule was known as Hund's Rule.
The valence electrons are the electrons which are present in last shell. Thus valence electrons are 4, two in s and 2 in p orbitals.

Answer:
(1) 0.10 (2) 17.8 g
Explanation:
Since the reaction ratio is 1:1 what we need is to convert the given masses to moles and you will have the answer:
MW anthracene = 178.23 g/mol
MW maleic anhydride = 98.06 g/mol
a) mass anthracene = 178 mg x 1 g/ 1000 mg = 0.178 g anthracene
Moles anthracene = 0.178 g anthracene/ 178.23 g/mol
= 0.001 mol anthracene
0.001 mol anthracene x 1 mol maleic acid/mol anthracene
= 0.001 mol maleic anhydride
mass maleic anhydride = 0.001 mol x 98.06 g/mol = 0.10 g
b) moles maleic anhydride = 9.8 g/ 98.06 g/mol = 0.099 moles
0.099 moles maleic anhydride x 1 mol anthracene/mol maleic anhydride =
0.099 mol anthracene
g anthracene = 0.10mol x 178 g/mol = 17.8 g
<span>NaCl
First calculate the molar mass of NaCl and AgNO3 by looking up the atomic weights of each element used in either compound
Sodium = 22.989769
Chlorine = 35.453
Silver = 107.8682
Nitrogen = 14.0067
Oxygen = 15.999
Now multiply the atomic weight of each element by the number of times that element is in each compound and sum the results
For NaCl
22.989769 + 35.453 = 58.44277
For AgNO3
107.8682 + 14.0067 + 3 * 15.999 = 169.8719
Now calculate how many moles of each substance by dividing the total mass by the molar mass
For NaCl
4.00 g / 58.44277 g/mol = 0.068443 mol
For AgNO3
10.00 g / 169.8719 g/mol = 0.058868
Looking at the balanced equation for the reaction, there is a 1 to 1 ratio in molecules for the reaction. Since there is a smaller number of moles of AgNO3 than there is of NaCl, that means that there will be some NaCl unreacted, so the excess reactant is NaCl</span>
Answer: C. 25.6 kPa
Explanation:
The Gauge pressure is defined as the amount of pressure in a fluid that exceeds the amount of pressure in the atmosphere.
As such, the formula will be,
PG = PT – PA
Where,
PG is Gauge Pressure
PT is Absolute Pressure
PA is Atmospheric Pressure
Inputted in the formula,
PG = 125.4 - 99.8
PG = 25.6 kPa
The gauge pressure inside the container is 25.6kPa which is option C.