That depends. there are 2 possible answers.
H
C - C = C - H gives a different answer on the right than on the left.
One the left side, the second Carbon is attached to a double bond and has but one hydrogen attached to it.
The Carbon on the right of the double bond has 2
H
C- C = C - H
H
I'm not sure what you should put. It's one of those things that I would repeat my argument and submit it.
Answer:
B) stabilization by hydration
C) resonance stabilization
E) increase in entropy
Explanation:
The high phosphoryl potential of ATP results from structural differences that exist between ATP and it's product of hydrolysis. There is higher phosphoryl transfer potential from ATP than glycerol 3-phosphate.
There are some factors associated to the high phosphoryl-transfer potential of ATP which are;
1.)Electrostatic repulsion
2.) Resonance stabilization
3.) Increase in entropy.
4. Stabilization by hydration.
ATP has a phosphoryl-transfer potential which lyes between high phosphoryl-potential compounds that is a derivation of fuel molecules and acceptor molecules that needs the adequate addition of a phosphoryl group for cellular needs.
Answer:
K = 6.5 × 10⁻⁶
Explanation:
C₅H₆O₃ ⇄ C₂H₆ + 3CO
Use PV=nRT to find the initial pressure of C₅H₆O₃
P (2.50) = (0.0493) (0.08206) (473)
P = 0.78atm
C₅H₆O₃ ⇄ C₂H₆ + 3CO
0.78atm 0 0
0.78 - x x 3x
1.63atm = 0.78 - x + x + 3x
P(total) = 0.288atm
C₅H₆O₃ = 0.78 - 0.288
= 0.489atm
C₂H₆ = 0.288atm
CO = 0.846atm

= 0.379


= 6.5 × 10⁻⁶
The answer is (3) An electron in the third shell has more energy than an electron in the second shell. The energy of electron will increase when number of shell increase.
<span>Answer:
Enthalpy is delta-H-
We need to look at the molecule and determine which bonds are broken adn which bonds are formed.
Bonds that are broken are H-H (from the H2 molecule) and the C=O from acetone.
their energies add up like this: 436 kJ + 745 kJ = 1181 kJ
looking at the bonds formed, these are C-O, O-H, and C-H. these add up to 1229 kJ
solving for delta H by taking the sum of the broken bonds and subtracting the sum of the formed bonds, like so:
1181 - 1229 = -48 kJ</span>