To determine the pOH assuming water is the universal solvent take the value of 10 ^ -14 and then divide it by the hydronium concentration and then take the negative logarithm of the final answer that is the solution to the hydroxide ion concentration in the solution.
Answer:
The open system evaporates the solvent in the solution
Explanation:
An open system is a system in which exchange of materials and energy can occur. If a TLC set up is left open, then the set up constitutes an open system.
During TLC, the sample is dotted on the plate and inserted into a suitable solvent. The solvent moves up the plate and achieves the required separation of the mixture.
Most of these solvents used used TLC are volatile organic compounds. Therefore, if the TLC set up is left open, the solvent will evaporate leading to poor results after running the TLC experiment.
Answer:p-hydroxybenzaldehyde is stronger acid to phenol
para-cyanophenol is stronger acid to meta-cyanophenol
o-fluorophenol is stronger acid to p-fluorophenol.
Explanation:
The PKa tool relative to Ph are used to contrast the pairs.
The pKa of phenol is 10. The pKa of p-hydroxybenzaldehyde is 9.24
The pKa for meta-cyanophenol is 8.61 and the pKa for para-cyanophenol is 7.95.
The pKa value of o-fluorophenol is 8.7, while that of the p-fluorophenol is 9.9. It's obvious that the inductive effect is more dominant at ortho-position, which results in a more acidic nature
The pKa is the pH value at which a chemical species will accept or donate a proton. The lower the pKa, the stronger the acid and the greater the ability to donate a proton in aqueous solution.
Explanation:
From the source, The student recrystallized biphenyl by using benzene. Biphenyl is non polar and so is benzene. Biphenyl is very soluble in benzene at low as well as high temperature. Thus, it do not recrystallize as like dissolves like and gives a very poor yield.
The good recovery of the product is dependent on compound having high solubility at the high temperatures and having low solubility at the low temperatures.
Answer:
The correct answer is option E.
Explanation:
The Gibbs free energy is given by expression:
ΔG = ΔH - TΔS
ΔH = Enthalpy change of the reaction
T = Temperature of the reaction
ΔS = Entropy change
We have :
ΔH = -720.5 kJ/mol = -720500 J/mol (1 kJ = 1000 J)
ΔS = -263.7 J/K
T = 141.0°C = 414.15 K


The Gibb's free energy of the given reaction at 141.0°C is -611.3 kJ/mol.