answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
1 year ago
8

The specific heat capacity of a pure substance can be found by dividing the heat needed to change the temperature of a sample of

the substance by the mass of the sample and by the change in temperature. The specific heat capacity of a certain substance has been measured to be 3.52 J/g °C. Suppose 420.0 g of the substance is heated until the temperature of the sample has changed by 43.8 °C.
Write an equation that will let you calculate the last Q that was needed for this temperature change. Your equation should contain only symbols. Be sure to define each symbol.
Chemistry
1 answer:
mrs_skeptik [129]1 year ago
4 0

Answer:

The answers to your questions are given below.

Explanation:

Data obtained from the question include:

Mass (M) = 420.0 g

Temperature change (ΔT) = 43.8 °C

Specific heat capacity (C) = 3.52 J/g °C

Heat needed (Q) =...?

The heat needed for the temperature change can be obtained by using the following formula:

Q = MCΔT

Where:

Q is the heat needed measured in joule (J).

M is the mass of substance measured in grams (g)

C is the specific heat capacity of the substance with unit J/g °C.

ΔT is the temperature change measured in degree celsius (°C).

Thus, we can calculate the heat needed to change the temperature as follow:

Q = MCΔT

Q = 420 x 3.52 x 43.8

Q = 64753.92 J

Therefore, the heat needed to cause the temperature change is 64753.92 J

You might be interested in
Glade air freshener gel “disappearing” is an example of
netineya [11]

Answer:

Vaporization

Explanation:

Vaporization is the change of a specie to the gaseous state. To 'disappear' in this case simply means to change to the gaseous state.

Substances with high vapour pressure tend to be easily converted to vapour phase. Hence if Glade air freshener gel 'disappears' easily, then it has a high vapour pressure and is easily converted to vapour (gas).

8 0
1 year ago
One crystalline form of silica (SiO2) has a cubic unit cell, and from X-ray diffraction data it is known that the cell edge leng
Sav [38]

Answer:

8 Silicon atom are present in unit cell.

16 oxygen atoms are present unit cell.

Explanation:

Number of atoms in unit cell = Z =?

Density of silica = tex]2.32 g/cm^3[/tex]

Edge length of cubic unit cell = a  = 0.700 nm = 0.700\times 10^{-7} cm

1 nm=10^{-7} cm

Molar mass of Silica  = 28.09 g/mol+16.00\times 2=60.09 g/mol

Formula used :  

\rho=\frac{Z\times M}{N_{A}\times a^{3}}

where,

\rho = density

Z = number of atom in unit cell

M = atomic mass

(N_{A}) = Avogadro's number  

a = edge length of unit cell

On substituting all the given values , we will get the value of 'a'.

2.32 g/cm3=\frac{Z\times 60.09 g/mol}{6.022\times 10^{23} mol^{-1}\times (0.700\times 10^{-7}cm)^{3}}

Z = 8

1 silicon is 2 oxygen atoms. then 8 silicon atoms will be 16 oxygen atoms.

5 0
2 years ago
Consider the formation of nitryl fluoride: 2NO2(g)+F2(g)⇌2NO2F(g) The reaction is first order in F2 and second order overall. Wh
Dahasolnce [82]

Answer:

Rate = k[NO_{2}][F_{2}]

Explanation:

  • Two reactants are present in this reaction which are NO_{2}and F_{2}
  • We know overall order of a reaction is summation of individual order with respect to reactants present in rate law equation.
  • Here, overall order of reaction is 2 including first order with respect to F_{2}
  • So, rate of reaction should also be first order with respect to another reactant i.e. first order with respect to NO_{2}
  • So, rate law: rate = k[NO_{2}][F_{2}]
7 0
2 years ago
Find the molarity of 750 ml solution containing 346 g of potassium nitrate
Zinaida [17]
Given mass of KNO₃=346g
Molar mass of KNO₃=(39.098)+(14)+(15.99*3)=101.068gmol⁻¹
Volume of Solution=750ml=0.75dm³

Molarity=(mass of solute/molar mass of solute)*(1/volume of sol. in dm³)
            =(346/101.068)*(1/0.75)
            =4.56 mol dm⁻³
5 0
2 years ago
Food deteriorates more slowly in a refrigerator because
andreev551 [17]
The bacteria move slower and also when refrigerated there is less liquid so mold is less likely to happen.
6 0
2 years ago
Read 2 more answers
Other questions:
  • Label the molecular shape around each of the central atoms in the amino acid glycine. hint
    11·2 answers
  • Molecules containing a large number of hydroxyl groups are
    15·1 answer
  • Sodium carbonate (Na2CO3) reacts with acetic acid (CH3COOH) to form sodium acetate (NaCH3COO), carbon dioxide (CO2), and water (
    14·2 answers
  • Some baker of sourdough and a few other types of bread have what they call “starter dough”. This dough contains yeast from which
    7·1 answer
  • Potassium carbonate, K2CO3, sodium iodide, NaI, potassium bromide, KBr, methanol, CH3OH, and ammonium chloride, NH4Cl, are solub
    5·1 answer
  • Hydrogen gas and bromine gas react to form hydrogen bromide gas. How much heat (kJ) is released when 155 grams of HBr is formed
    8·1 answer
  • Radioactive plutonium−239 (t1/2 = 2.44 × 105 yr) is used in nuclear reactors and atomic bombs. If there are 6.40 × 102 g of the
    14·1 answer
  • 3. A student was given an unknown metal. The student determined that the mass of the metal was 30.2 g. The student placed the
    14·1 answer
  • The density of mercury is 13.6 g/mL what is the density in lbs/L ( 1 lb hint =0.454 kg )
    8·1 answer
  • Suppose a metal will eject electrons from its surface when struck by yellow light. What will happen if the surface is struck wit
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!