Explanation :
In the given case different law related to gas is given. The attached figure shows the required solution.
Boyle's law states that the pressure is inversely proportional to the volume of the gas i.e.


k is a constant.
Charle's law states that the volume of directly proportional to the temperature of the gas.


Combined gas law is the combination of the pressure, volume and the temperature of the gas i.e.

Hence, this is the required solution.
Answer:
2.4 ×10^24 molecules of the herbicide.
Explanation:
We must first obtain the molar mass of the compound as follows;
C3H8NO5P= [3(12) + 8(1) + 14 +5(16) +31] = [36 + 8 + 14 + 80 + 31]= 169 gmol-1
We know that one mole of a compound contains the Avogadro's number of molecules.
Hence;
169 g of the herbicide contains 6.02×10^23 molecules
Therefore 669.1 g of the herbicide contains 669.1 × 6.02×10^23/ 169 = 2.4 ×10^24 molecules of the herbicide.
Cu has two possible charges: plus 1 and plus 2. Thus, when copper is combined with an anion (negatively charged ion), the anion carries a subscript of one or two. This is shown in the given, Moreover, the given shows copper carries a subscript only of one. This means the anion has an original charge of negative one. These elements belong to the halogen family (Group 17).
<span>The elements in a Periodic Table are grouped according to their classifications. The major classifications are Metals, Non-metals, and Metalloids. Their level of reactivity can be gauged by simply looking at their position in the table. For Metals, their reactivity increases as you move to the left then going down. Non-metal reactivity increases as you move to the right then going up, starting at the bottom of the table.</span>
Answer:
The half-life varies depending on the isotope.
Half-lives range from fractions of a second to billions of years.
The half-life of a particular isotope is constant.