<span>3 ZnBr2 (aq) + 2 Al (s) ==> 2 AlBr3 (aq) + 3 Zn (s)
The unbalanced equation is:
ZnBr2 (aq) + Al (s) ==> AlBr3 (aq) +Zn (s)
First, count the atoms of each element on each side of the equation:
Zn 1,1
Br 2,3
Al 1,1
The zinc and aluminum, but the bromine doesn't match with 2 and 3. So look for the least common multiple of 2 and 3 which is 6 and adjust the quantities on both sides to have 6 bromine atoms on both sides. Do this by having 3 zinc bromide on the left and 2 aluminum bromide on the right, getting:
3 ZnBr2 (aq) + Al (s) ==> 2 AlBr3 (aq) +Zn (s)
Now check the atom counts again for both sides:
Zn 3,1
Br 6,6
Al 1,2
Now bromine matches, but zinc and aluminum doesn't. But it's easy enough to add an extra aluminum to the left and 2 more zinc to the right. Giving:
3 ZnBr2 (aq) + 2 Al (s) ==> 2 AlBr3 (aq) + 3 Zn (s)
Now check the atom counts again:
Zn 3,3
Br 6,6
Al 2,2
And they match. So the balanced equation is:
3 ZnBr2 (aq) + 2 Al (s) ==> 2 AlBr3 (aq) + 3 Zn (s)</span>
Answer:
The right solution is "
".
Explanation:
As we know,
1 mole electron = 
Total energy = 
= 
For single electron,
The amount of energy will be:
= 
= 
Answer:
The concentration of Li (in wt%) is 3,47g/mol
Explanation:
To obtain the 2,42g/cm³ of density:
2,42g/cm³ = 2,71g/cm³X + 0,534g/cm³Y <em>(1)</em>
<em>Where X is molar fraction of Al and Y is molar fraction of Li.</em>
X + Y = 1 <em>(2)</em>
Replacing (2) in (1):
Y = 0,13
Thus, X = 0,87
The weight of Al and Li is:
0,87*26,98g/mol = 23,4726 g of aluminium
0,13*6,941g/mol = 0,84383 g of lithium
The concentration of Li (in wt%) is:
0,84383g/(0,84383g+23,4726g) ×100= <em>3,47%</em>
<span>This is an example of a substance changing state, a physical change, the molecules are changed, but the atoms themselves do not change, just their arrangement, and the mass of the molecules is the same. Therefor energy is absorbed by the molecules, as energy is required to change the state or physicality of a molecule structure.Hope this helps. Let me know if you need additional help!</span>
<span>2 KClO3(s) → 3 O2(g) + 2 KCl(s)
</span><span>Note: MnO2 (Manganese Dioxide) is not part of the reaction. A catalyst lowers the activation energy and increases both forward and reverse reactions at equal rates.
</span>
molar mass of KClO3 = 122.5
Moles of KClO3 = 3.45 / 122.55 = 0.028
Moles of O2 produce =

= 0.042 moles
molar mass of O2 = 32
so, mass of O2 = 32 x 0.042 = 1.35 g