Answer:
The correct answer is 0.300 * 10^23 ions.
Explanation:
Based on the given question, there is a need to find the number of chloride ions in the mentioned 6.8 grams of zinc chloride compound.
The moles of zinc chloride (ZnCl2) is,
= mass of zinc + 2 mass of chlorine
= 65.38 + 2 (35.45)
=65.38 + 70.90
= 136.28 grams (The molecular mass of zinc is 65.38 and the molecular mass of chlorine is 35.45)
Thus, 136.28 g of ZnCl2 contains 70.90 grams of chlorine
Therefore, 6.8 grams of ZnCl2 will comprise = (70.90/136.28) * 6.8
= 3.537 g of chlorine
70.90 g of Cl comprise 6.022*10^23 chlorine, thus, 3.537 g of Cl will comprise (6.022*10^23/70.90) * 3.537
= 0.300 * 10^23 ions of chlorine.
Answer:
The disadvantages of each of the given model of electron configuration have been mentioned below:
1). Dot Structures - They take up excess space as they do not display the electron distribution in orbitals.
2). Arrow and line diagrams make the counting of electrons and take up too much space.
3). Written Configurations do not display the electron distribution in orbitals and help in lose counting of electrons easily.
Answer:
1. Gases can be easily liquefied into very small volumes and stored in liquid form Eg in LPGA cylinders and used in homes.
2. Balloons can be easily filled with air.
Answer:
The balanced reaction is:-

expression is:-
![K_{b}=\frac {\left [ C_6H_5COOH \right ]\left [ {OH}^- \right ]}{[C_6H_5COO^-]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20C_6H_5COOH%20%5Cright%20%5D%5Cleft%20%5B%20%7BOH%7D%5E-%20%5Cright%20%5D%7D%7B%5BC_6H_5COO%5E-%5D%7D)
Explanation:
Benzoate ion is the conjugate base of the benzoic acid. It is a Bronsted-Lowry base and the dissociation of benzoate ion can be shown as:-

The expression for dissociation constant of benzoate ion is:
![K_{b}=\frac {\left [ C_6H_5COOH \right ]\left [ {OH}^- \right ]}{[C_6H_5COO^-]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20C_6H_5COOH%20%5Cright%20%5D%5Cleft%20%5B%20%7BOH%7D%5E-%20%5Cright%20%5D%7D%7B%5BC_6H_5COO%5E-%5D%7D)
Answer: 17 grams
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
Standard condition of temperature (STP) is 273 K and atmospheric pressure is 1 atm respectively.
According to the ideal gas equation:
P = Pressure of the gas = 1 atm
V= Volume of the gas = 5.9 L
T= Temperature of the gas = 273 K
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas= ?

Mass of 
Thus 17 g
gas is present at STP in a 5.9 L container.