Answer:
The final volume of the sample of gas
= 0.000151 
Explanation:
Initial volume
= 200 ml = 0.0002
Initial temperature
= 296 K
Initial pressure
= 101.3 K pa
Final temperature
= 336 K
Final pressure
= K pa
Relation between P , V & T is given by

Put all the values in the above equation we get

= 0.000151 
This is the final volume of the sample of gas.
When you say the solution is hypertonic, it means that the solution has a higher osmotic pressure. The formula for this is:
P = iMRT,
for strong electrolytes, i = number of ions.
for nonelectrolytes, i = 1
1. The P for sucrose solution which is a nonelectrolyte (assuming room temp):
P = (1)(1m)(8.314 J/mol-K)(298 K)
P = 2477.572 Pa
The P for NaCl solution, which is a strong electrolyte:
P = (2)(1 m)(8.314)(298 K)
P = 4955.144 Pa
<em>So, that means that NaCl is more hypertonic than the sucrose solution.</em>
2. For the second question, the P for the combination of 1 m glucose (nonelectrolyte) and 1 m sucrose is:
P = (1)(1 m)(8.314)(298 K) + (1)(1)(8.314)(298 K) = 4955.144 Pa
<em>In this case, the osmotic pressures are now equal. It is not hypertonic, but isotonic.</em>
Yes it is correct for that answer
The balanced chemical reaction is written as:
4Al + 3O2 = 2Al2O3
To determine the mass of oxygen gas that would react with the given amount of aluminum metal, we use the initial amount and relate this amount to the ratio of the substances from the chemical reaction. We do as follows:
moles Al = 16.4 g ( 1 mol / 26.98 g ) = 0.61 mol Al
moles O2 = 0.61 mol Al ( 3 mol O2 / 4 mol Al ) = 0.46 mol O2
mass O2 = 0.46 mol O2 ( 32.0 g / mol ) = 14.59 g O2
Therefore, to completely react 16.4 grams of aluminum metal we need a minimum of 14.59 grams of oxygen gas.