Answer:
Increasing the volume of the vessel
Explanation:
By the Le Chatelier's principle, if a system in equilibrium suffer a variation that disturbs the equilibriu, the reaction shift in the way to minimize the pertubation and re-establish the equilibrium.
For a variation in pressure, when it increases, the reaction shift for the smallest of gas volume, and if decreases, the reaction will shift for the large gas volume. So, for the reaction given, the products have the large amount of gas, so by decreasing the pressure, more products will be formed, and the amount of NH₄HS will reduce. To decrease the pressure, we can increase the volume of the vessel: for the ideal gas equation (PV= nRT), pressure and volume are indirectly proportional.
Answer:
Neon
Explanation:
1s² 2s² 2p⁶ 3s¹ or [Ne] 3s¹
The outer most shell is the 3s¹.
For this atom to achieve stability, if it loses the electron in the 3s shell, it would resemble an inert element with a complete octet configuration. Therefore, the atom would be like:
1s² 2s² 2p⁶ which is the configuration of Ne
We can solve this without a concrete formula through dimensional analysis. This works by manipulating the units such that you end up with the unit of the final answer. Manipulate them by cancelling units that appear both in the numerator and denominator side. As a result, we must be left with the units of g. The current in A or amperes is equivalent to amount of Coulombs per second. Since this involves Coulombs, we will use the Faraday's constant which is 96,500 C/mol electron. The reaction is:
Cr³⁺(aq) + 3e⁻ --> Cr(s)
This means that for every 3 moles of electron transferred, 1 mole of Chromium metal is plated. The molar mass of Cr: 52 g/mol. The solution is as follows:
Mass of Chromium metal = (8 C/s)(60 s/1 min)(160 min)(1 mol e⁻/96,500 C)(1 mol Cr/3 mol e)(52 g/mol)
<em>Mass of Chromium metal = 13.79 g</em>
When NaCH3Coo mixed with HCl we will get NaCl and CH3CooH as shown in the following balanced equation:
NaCH3Coo + HCl → NaCl + CH3CooH
so from this equation, we can conclude that is no precipitate because all we get is the acetic acid which found in vinegar and the NaCl which is very soluble so we don't have any precipitate.
so, your answer is no precipitate, no reaction
Answer:
the partial pressure of Xe is 452.4 mmHg
Explanation:
Dalton's law of partial pressures says that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases.
The partial pressures can be calculated with the molar fraction of the gas, in this case, Xe.
Molar fraction of Xe is calculated as follows:


Then, 0.29 is the molar fraction of Xe in the mixture of gases given.
To know the parcial pressure of Xe, we have to multiply the molar fraction by the total pressure:
Partial Pressure of Xe=1560mmHg*0.29
Partial Pressure of Xe=452.4mmHg