Answer:

Explanation:
Hello,
In this case, considering that the safe temperature may be computed via the ideal gas law as we now the pressure, mass and volume via the dimensions:

The pressure in atm is:

And the moles considering the mass and molar mass (66 g/mol) of dinitrogen difluoride (N₂F₂):

In sich a way, by applying the ideal gas equation, which is not the best assumption but could work as an approximation due to the high temperature, the temperature, with three significant figures, will be:

Best regards.
This problem handles<em> boiling-point elevation</em>, which means we will use the formula:
ΔT = Kb * m
Where ΔT is the difference of Temperature between boiling points of the solution and the pure solvent (Tsolution - Tsolvent). Kb is the ebullioscopic constant of the solvent (2.64 for benzene), and m is the molality of the solution.
Knowing that benzene's boiling point is 80.1°C, we <u>solve for m</u>:
Tsolution - Tsolvent = Kb * m
80.23 - 80.1 = 2.64 * m
m = 0.049 m
We use the definition of molality to <u>calculate the moles of azulene</u>:
0.049 m = Xmoles azulene / 0.099 kgBenzene
Xmoles azulene = 4.87 x10⁻³ moles azulene
We use the mass and the moles of azulene to<u> calculate its molecular weight</u>:
0.640 g / 4.875 x10⁻³ mol = 130.28 g/mol
<em>A molecular formula that would fulfill that molecular weight</em> is C₁₀H₁₀. So that's the result of solving this problem.
The actual molecular formula of azulene is C₁₀H₈.
0.53 x 200ml = 106 ml of the pH 9.0 buffer + 94 ml of the pH 10 buffer gives the desired solution
<span> </span>
Answer:
Explanation:I would need more info to understand this question but explaining molecules is pretty easy tho
Answer:
Look on the picture.
Explanation:
He could find only 2 isomers of n-hexane alkenes for this reaction. Other two could be marked from other direction.