2.10 x 10^-10 M. Ans
pH + pOH = 14
Where, pOH is the power of hydroxide ion concentration and pH is the power of concetration of the H+ ion.
Now, pOH = 14 - 4.32
= 9.68
Now, the concentration of [H+] is 10-7 M, then pH is 7 and for [OH-] = 10-7 M, the pOH is also 7.
Now, pOH = -log[OH-]
[OH-] = 10^- pOH
= 10^-9.68
= 2.10 x 10^-10 M
Answer:

Explanation:
Hello,
Based on the given chemical reaction, as 31.2 mL of hydrogen are yielded, one computes its moles via the ideal gas equation under the stated conditions as shown below:

Now, since the relationship between hydrogen and magnesium is 1 to 1, one computes its milligrams by following the shown below proportional factor development:

Best regards.
Answer:
A. 4-ethyl-hex-3,5-dien-2-ol.
B. 2-chloro-3-methyl-5-<em>tert</em>-butylphenol.
Explanation:
Hello there!
In this case, according to the given problems, it is possible to apply the IUPAC rules to obtain the following names:
A. 4-ethyl-hex-3,5-dien-2-ol because we have an ethyl radical at the fourth carbon and the beginning of the parent chain is on the Me (CH3) because it is closest to first OH.
B. 2-chloro-3-methyl-5-<em>tert</em>-butylphenol: because we start at the alcohol and have a chlorine atom on the second carbon, a methyl radical on the third carbon, a <em>tert</em>-butyl on the fifth carbon and the parent chain is benzene which is phenol as an alcohol.
Regards!
Answer:
Compression of hydrogen gas within the container.