Answer:
Percent loss of water = 25%
Explanation:
Given data:
Mass of hydrated salt = 15.6 g
Mass of anhydrous salt = 11.7 g
Percentage of water lost = ?
Solution:
First of all we will calculate the mass of water in hydrated salt.
Mass of water = Mass of hydrated salt - Mass of anhydrous salt
Mass of water = 15.6 g - 11.7 g
Mass of water = 3.9 g
Now we will calculate the percentage.
Percent loss of water = mass of water / total mass × 100
Percent loss of water = 3.9 g/ 15.6 g × 100
Percent loss of water = 25%
It glow, so light energy go out of the system, exotermic
Answer:
4 g after 58.2 years
0.0156 After 291 years
Explanation:
Given data:
Half-life of strontium-90 = 29.1 years
Initially present: 16g
mass present after 58.2 years =?
Mass present after 291 years =?
Solution:
Formula:
how much mass remains =1/ 2n (original mass) ……… (1)
Where “n” is the number of half lives
to find n
For 58.2 years
n = 58.2 years /29.1 years
n= 2
or 291 years
n = 291 years /29.1 years
n= 10
Put values in equation (1)
Mass after 58.2 years
mass remains =1/ 22 (16g)
mass remains =1/ 4 (16g)
mass remains = 4g
Mass after 58.2 years
mass remains =1/ 210 (16g)
mass remains =1/ 1024 (16g)
mass remains = 0.0156g
Answer is: <span>unbalanced electronegativity of the hydrogens and oxygens as they share electrons.
Oxygen has greater electronegativity than hydrogen, because of that oxygen is partially negative and hydrogen is partially positive.
</span>Electronegativity<span> is a </span>chemical property<span> that describes the tendency of an </span>atom<span> to attract a shared pair of </span>electrons<span> towards itself.</span>