Answer:
The correct answer is 0.300 * 10^23 ions.
Explanation:
Based on the given question, there is a need to find the number of chloride ions in the mentioned 6.8 grams of zinc chloride compound.
The moles of zinc chloride (ZnCl2) is,
= mass of zinc + 2 mass of chlorine
= 65.38 + 2 (35.45)
=65.38 + 70.90
= 136.28 grams (The molecular mass of zinc is 65.38 and the molecular mass of chlorine is 35.45)
Thus, 136.28 g of ZnCl2 contains 70.90 grams of chlorine
Therefore, 6.8 grams of ZnCl2 will comprise = (70.90/136.28) * 6.8
= 3.537 g of chlorine
70.90 g of Cl comprise 6.022*10^23 chlorine, thus, 3.537 g of Cl will comprise (6.022*10^23/70.90) * 3.537
= 0.300 * 10^23 ions of chlorine.
Answer:
c. 6.
Explanation:
Looking at the description given in the question, the elements involved must belong to the p- block of the periodic table and must be in period 5. They also must possess valence electrons in the 5p- orbital.
Now if we look at the p- block of period 5, the following elements satisfy these requirements; Sr, In, Sn, Sb, Te and I.
Hence there are six of such elements.
Answer:
Final pressure = 2.3225 atm
Amontons’s law states that
At constant volume and number of molecules, the pressure of a given mass of gas is directly proportional to its temperature
Explanation:
Temperature causes increased excitement of gas molecules increasing the number of collisions with the walls of the container which is sensed as increase in pressure
Amontons’s law: P/T = Constant at constant V and n
That is P1/T1 = P2/T2
Where temperature is given in Kelvin
Hence T1 of 10°C = 273.15 + 10 = 283.15K
Also temperature T2 of 40°C = 313.15 K
Hence
P2 = (P1/T1)×T2 = (2.1/283.15)×313.15 = 2.3225 atm
Answer:
Density = Mass / Volume. so, x = 90.5 g / 96 mL ... The Density would be 0.942 g/mL