Answer : The normality of the solution is, 30.006 N
Explanation :
Normality : It is defined as the number of gram equivalent of solute present in one liter of the solution.
Mathematical expression of normality is:

or,

First we have to calculate the equivalent weight of solute.
Molar mass of solute
= 94.97 g/mole

Now we have to calculate the normality of solution.

Therefore, the normality of the solution is, 30.006 N
Explanation :
In the given case different law related to gas is given. The attached figure shows the required solution.
Boyle's law states that the pressure is inversely proportional to the volume of the gas i.e.


k is a constant.
Charle's law states that the volume of directly proportional to the temperature of the gas.


Combined gas law is the combination of the pressure, volume and the temperature of the gas i.e.

Hence, this is the required solution.
Answer:
Explanation:
N₂ + 3H₂ = 2 NH₃
1 vol 2 vol
786 liters 1572 liters
786 liters of dinitrogen will result in the production of 1572 liters of ammonia
volume of ammonia V₁ = 1572 liters
temperature T₁ = 222 + 273 = 495 K
pressure = .35 atm
We shall find this volume at NTP
volume V₂ = ?
pressure = 1 atm
temperature T₂ = 273


liter .
mol weight of ammonia = 17
At NTP mass of 22.4 liter of ammonia will have mass of 17 gm
mass of 303.44 liter of ammonia will be equal to (303.44 x 17) / 22.4 gm
= 230.28 gm
=.23 kg / sec .
Rate of production of ammonia = .23 kg /s .
The question is missing. Here is the complete question.
Which balanced redox reaction is ocurring in the voltaic cell represented by the notation of
?
(a) 
(b) 
(c)
(d) 
Answer: (d) 
Explanation: <u>Redox</u> <u>Reaction</u> is an oxidation-reduction reaction that happens in the reagents. In this type of reaction, reagent changes its oxidation state: when it loses an electron, oxidation state increases, so it is oxidized; when receives an electron, oxidation state decreases, then it is reduced.
Redox reactions can be represented in shorthand form called <u>cell</u> <u>notation,</u> formed by: <em><u>left side</u></em> of the salt bridge (||), which is always the <em><u>anode</u></em>, i.e., its half-equation is as an <em><u>oxidation</u></em> and <em><u>right side</u></em>, which is always <em><u>the cathode</u></em>, i.e., its half-equation is always a <em><u>reduction</u></em>.
For the cell notation: 
Aluminum's half-equation is oxidation:

For Lead, half-equation is reduction:

Multiply first half-equation for 2 and second half-equation by 3:


Adding them:

The balanced redox reaction with cell notation
is
