Answer:
In a favorable reaction, the free energy of the products is less than the free energy of the reactants.
Explanation:
The free energy of a system is the amount of a system's internal energy that is available to perform work. The different forms of free energy include Gibbs free energy and Helmholtz free energy.
In a system at constant temperature and pressure, the energy that can be converted into work or the amount of usable energy in that system is known as Gibbs free energy. In a system at constant temperature and volume, the energy that can be converted into work is known as Helmholtz free energy.
The change in free energy of a system is the maximum usable energy that is released or absorbed by a system when it goes from the initial state (i.e., all reactants) to the final state (i.e., all products).
In a chemical reaction, some bonds in the reactants are broken by absorbing energy and new bonds are formed in the products by releasing energy. As the reaction proceeds, the free energy of reactants is much greater than the products. As the products are formed, the concentration of reactants decreases and the difference in their free energy also decreases. This chemical reaction will occur until chemical equilibrium is achieved i.e., the free energy of the products and reactants is equal and the difference in their free energy is zero.
Answer:
61 mole % propylcyclohexane and 39 mole % propylbenzene
Explanation:
For convenience, let’s call propylcyclohexane <em>Component 1 </em>and propylbenzene <em>Component 2</em>.
According to <em>Raoult’s Law</em>,
and

where
<em>p</em>₁ and <em>p</em>₂ are the vapour pressures of the components above the solution
χ₁ and χ₂ are the mole \fractions of the components
<em>p</em>₁° and <em>p</em>₂° are the vapour pressures of the pure components.
So,


= <em>p</em>₁ + <em>p</em>₂= 461 torr + 290 torr = 751 torr
∴ In the vapour

χ₂ = 1 – χ₁ = 1 - 0.61 = 0.39
Answer:
b) +2 and +3.
Explanation:
Hello,
In this case, given the molecular formulas:

And:

We can relate the subscripts with the oxidation states by knowing that they are crossed when the compound is formed, for that reason, we notice that oxygen oxidation state should be -2 for both cases and the oxidation state of X in the first formula must be +2 since both X and O has one as their subscript as they were simplified:

Moreover, for the second case the oxidation state of X should be +3 in order to obtain 3 as the subscript of oxygen:

Thus, answer is b)+2 and +3
Best regards.
Answer:
-250.3kJ
Explanation:
Based in the reactions and using -<em>Hess's law-</em>:
(1) P₄(s) + 6 Cl₂(g) → 4PCl₃(g) ΔH₁ = -4439kJ
(2) 4PCl₅(g) → P₄(s) + 10Cl₂ ΔH₂ = 3438kJ
The sum of (1) + (2) is:
4PCl₅(g) → 4PCl₃(g) + 4 Cl₂ ΔH = -4439kJ + 3438kJ = -1001kJ
Dividing this reaction in 4:
PCl₅(g) → PCl₃(g) + Cl₂ ΔH = -1001kJ / 4 = <em>-250.3kJ</em>
a.
Acids react with bases and give salt and water and the products.
Hence, HCl reacts with NaOH and gives NaCl salt and H₂O as the products. The reaction is,
HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l)
To balance the reaction equation, both sides hould have same number of elements.
Left hand side, Right hand side,
H atoms = 2 H atoms = 2
Cl atoms = 1 Cl atoms = 1
Na atoms = 1 Na atoms = 1
O atoms = 1 O atoms = 1
Hence, the reaction equation is already balanced.
b.
Molarity (M)= moles of solute (mol) / Volume of the solution (L)
HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l)
Molarity of NaOH = <span>0.13 M
</span>Volume of NaOH added = <span>43.7 mL
Hence, moles of NaOH added = 0.13 M x 43.7 x 10</span>⁻³ L
= 5.681 x 10⁻³ mol
Stoichiometric ratio between NaOH and HCl is 1 : 1
Hence, moles of HCl = moles of NaOH
= 5.681 x 10⁻³ mol
5.681 x 10⁻³ mol of HCl was in <span>26.9 mL.
Hence, molarity of HCl = </span>5.681 x 10⁻³ mol / 26.9 x 10⁻³ L
= 0.21 M