Br2 == 2Br
24% dissociated => n total moles, 0.24 mol*n of Br, and 0.76*n mol of Br2
=> partial pressure of Br, P Br = 0.24 bar, and
partical pressure of Br2, P Br2 = 0.76 bar
kp = (P Br)^2 / P Br2 = (0.24)^2 / 0.76 = 0.0758
Thank you for posting your question here at brainly. Below are the choices that can be found elsewhere:
12.88 M
<span>0.1278 M </span>
<span>0.2000 M </span>
<span>0.5150 M
</span>
Below is the answer:
<span>5 times diluted (250/50),so 2.575/5=0.515 M
</span>
I hope it helps.
The formula of the compound is XY. This means that the relation between the moles is 1: 1. One mole of X per one mole of Y.
From the information about the element X you can determine the number of moles of X (which is the same that the number of moles of Y).
# of moles of X = weigth of X / atomic mass of X = 17.15 g / 22.9 g/mol = 0.74598
Now the atomic mass of Y = weight of Y / # of moles of Y = 14.17 g / 0.74598 mol = 19 amu
Your answer is right.
Important elements to consider:
- to use the balanced equation (which you did)
- divide the masses of each compound by the correspondant molar masses (which you did)
- compare the theoretical proportions with the current proportions
Theoretical: 2 mol of Na OH : 1 mol of CuSO4
Then 4 mol of NaOH need 2 mol of CUSO4.
Given that you have more than 2 mol of of CUSO4 you have plenty of it and the NaOH will consume first, being this the limiting reagent.
The density of any substance does not change at a certain temperature and pressure. Even though mass and volume are intensive properties (depends on the amount of substance), density is not. It is merely a fixed ratio of mass to volume. Therefore, the solution is
Density = Mass/Volume
For your information, quantitatively, cm³ is equivalent to mL.
Density = 100 g/4.67 cm³ = 21.41 g/cm³