<h3>Answer:</h3>
Formal Charge on Nitrogen is "Zero".
<h3>Explanation:</h3>
Formal Charge on an atom in molecules is calculated using following formula;
Formal Charge = [# of Valence e⁻s] - [e⁻s in lone pairs + 1/2 # of Bonding e⁻s]
As shown in attached picture of Hydroxylamine, Nitrogen atom is containing two electrons in one lone pair of electrons and six electrons in three single bonds with two hydrogen and one oxygen atom respectively.
Hence,
Formal Charge = [5] - [2 + 6/2]
Formal Charge = [5] - [2 + 3]
Formal Charge = 5 - 5
Formal Charge = 0 (zero)
Hence, the formal charge on nitrogen atom in hydroxylamine is zero.
The correct answer is 1. Lose electrons and become positive ions.
I hope my answer was beneficial to you! c:
Answer:
[C] carbon solid
Explanation:
Pure solids and liquids are never included in the equilibrium constant expression because they do not affect the reactant amount at equilibrium in the reaction, thus since your equation has [C] as solid it will not be part of the equlibrium equation.
Answer:
Molarity of NaOH = 1.8 M.
Explanation:
From the question given above, the following data were obtained:
Mass of NaOH = 36 g
Molar mass of NaOH = 40 g/mol
Volume = 500 mL
Molarity of NaOH =?
Next, we shall determine the number of mole in 36 g of NaOH. This can be obtained as follow:
Mass of NaOH = 36 g
Molar mass of NaOH = 40 g/mol
Mole of NaOH =?
Mole = mass / molar mass
Mole of NaOH = 36 / 40
Mole of NaOH = 0.9 mole
Next, we shall convert 500 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
500 mL = 500 mL × 1 L / 1000 mL
500 mL = 0.5 L
Finally, we shall determine the molarity of NaOH. This can be obtained as follow:
Mole of NaOH = 0.9 mole
Volume = 0.5 L
Molarity of NaOH =?
Molarity = mole / Volume
Molarity of NaOH = 0.9 / 0.5
Molarity of NaOH = 1.8 M
The answer should be <span>enteropeptidase
</span>