Energy is released when a solute molecule is solvated.
Answer:option d==> Si.
Explanation:
The energy required to remove electron from a gaseous atom or ion is what is called an ionization energy. As we remove electrons continually in a gaseous atom or ion, the ionization energy increases which are know as the first ionization energy, the second ionization energy, third ionization energy and so on.
Looking at the electronic configuration of Silicon, Si; Ne 3s2 3p2. We can can see that the first four ionization energies are from the removal of the 3p2 and 3s2 electrons and the fifth ionization energy, which is the highest ionization energy of 14800 kJ/mol is the the electron removed from the core shell.
Answer:

Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:
Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
For two situations and phases, the equation becomes:

Given:
= 13.95 torr
= 144.78 torr
= 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
= 298.15 K
= 75°C = 348.15 K
So,





First you should know that there is seven oxygen atoms in one Mn2O7
So
2.00 moles of Mn2O7 contain 14.00 moles of oxygen...
Then you multiply this no. with Avagadro no....
from formula
Number of moles= no. of particles/avagadro's no..
14.00×6.02×10²³=84.28 atoms of oxygen...