Answer:
Explanation:
Given that:
the temperature
= 250 °C= ( 250+ 273.15 ) K = 523.15 K
Pressure = 1800 kPa
a)
The truncated viral equation is expressed as:

where; B = -
C = -5800 
R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹
Plugging all our values; we have


Multiplying through with V² ; we have


V = 2250.06 cm³ mol⁻¹
Z = 
Z = 
Z = 0.931
b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].
The generalized Pitzer correlation is :












The compressibility is calculated as:


Z = 0.9386


V = 2268.01 cm³ mol⁻¹
c) From the steam tables (App. E).
At 
V = 0.1249 m³/ kg
M (molecular weight) = 18.015 gm/mol
V = 0.1249 × 10³ × 18.015
V = 2250.07 cm³/mol⁻¹
R = 729.77 J/kg.K
Z = 
Z = 
Z = 0.588
Answer:
Explanation:
<u>1) Balanced chemical equation:</u>
<u>2) Mole ratio:</u>
- 2 mol S : 3 mol O₂ : 2 mol SO₃
<u>3) Limiting reactant:</u>
n = 6.0 g / 32.0 g/mol = 0.1875 mol O₂
n = 7.0 g / 32.065 g/mol = 0.2183 mol S
Actual ratio: 0.1875 mol O₂ / 0.2183 mol S =0.859
Theoretical ratio: 3 mol O₂ / 2 mol S = 1.5
Since there is a smaller proportion of O₂ (0.859) than the theoretical ratio (1.5), O₂ will be used before all S be consumed, and O₂ is the limiting reactant.
<u>4) Calcuate theoretical yield (using the limiting reactant):</u>
- 0.1875 mol O₂ / x = 3 mol O₂ / 2 mol SO₃
- x = 0.1875 × 2 / 3 mol SO₃ = 0.125 mol SO₃
<u>5) Yield in grams:</u>
- mass = number of moles × molar mass = 0.125 mol × 80.06 g/mol = 10.0 g
<u>6) </u><em><u>Percent yield:</u></em>
- Percent yield, % = (actual yield / theoretical yield) × 100
- % = (7.9 g / 10.0 g) × 100 = 79%
Arkeisha is correct because the fluid in an alkaline battery has a ph between 7.1 and 14.0
All you need to do is change 5% into a decimal which would be 5/100 = .05
then multiply the decimal by the total volume to get the amount of active ingredients in ml
.05 * 56ml = 2.8 ml of active ingredient.
Hope that helps!
Answer:
2,019 km
Explanation:
Step 1: Given data
Distance traveled by the car (D): 1,255 mi
Step 2: Convert the distance traveled by the car to kilometers
To convert one unit into another, we use a conversion factor. In this case, the appropriate conversion factor between miles and kilometers is 1 mile = 1.609 km. The distance traveled by the car, in kilometers, is:
D = 1,255 mi × (1.609 km/1 mi) = 2,019 km