answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
2 years ago
9

Excess aqueous copper(II) nitrate reacts with aqueous sodium sulfide to produce aqueous sodium nitrate and copper(II) sulfide as

a precipitate. In this reaction 469 grams of copper(II) nitrate were combined with 156 grams of sodium sulfide to produce 272 grams of sodium nitrate.

Chemistry
2 answers:
nikitadnepr [17]2 years ago
7 0

The question in incomplete, complete question is;

Determine the theoretical yield:

Excess aqueous copper(II) nitrate reacts with aqueous sodium sulfide to produce aqueous sodium nitrate and copper(II) sulfide as a precipitate. In this reaction 469 grams of copper(II) nitrate were combined with 156 grams of sodium sulfide to produce 272 grams of sodium nitrate.

Answer:

The theoretical yield of sodium nitrate is 340 grams.

Explanation:

Cu(NO_3)_2(aq)+Na_2S(aq)\rightarrow 2NaNO_3(aq)+CuS(s)

Moles of copper(II) nitrate = \frac{469 g}{187.5 g/mol}=2.5013 mol

Moles of sodium sulfide = \frac{156 g}{78 g/mol}=2 mol

According to reaction, 1 mole of copper (II) nitrate reacts with 1 mole of sodium sulfide.

Then 2 moles of sodium sulfide will react with:

\frac{1}{1}\times 2mol= 2 mol of copper (II) nitrate

As we can see from this sodium sulfide is present in limiting amount, so the amount of sodium nitrate will depend upon moles of sodium sulfide.

According to reaction, 1 mole of sodium sulfide gives 2 mole of sodium nitrate, then 2 mole of sodium sulfide will give:

\frac{2}{1}\times 2mol=4 mol sodium nitrate

Mass of 4 moles of sodium nitrate :

85 g/mol × 4 mol = 340 g

Theoretical yield of sodium nitrate = 340 g

The theoretical yield of sodium nitrate is 340 grams.

Maurinko [17]2 years ago
7 0

Explanation:

Below is an attachment containing the solution.

You might be interested in
When 28.0 g of acetylene reacts with hydrogen, 24.5 g of ethane is produced. What is the percent yield of C2H6 for the reaction?
Afina-wow [57]

Answer:

Y=75.6\%

Explanation:

Hello.

In this case, since no information about the reacting hydrogen is given, we can assume that it completely react with the 28.0 g of acetylene to yield ethane. In such a way, via the 1:1 mole ratio between acetylene (molar mass = 26 g/mol) and ethane (molar mass = 30 g/mol), we compute the yielded grams, or the theoretical yield of ethane as shown below:

m_{C_2H_6}^{theoretical}=28.0gC_2H_2*\frac{1molC_2H_2}{26gC_2H_2}*\frac{1molC_2H_6}{1molC_2H_2}  *\frac{30gC_2H_6}{1molC_2H_6}\\ \\m_{C_2H_6}^{theoretical}=32.3gC_2H_6

Hence, by knowing that the percent yield is computed via the actual yield (24.5 g) over the theoretical yield, we obtain:

Y=\frac{24.5g}{32.3g}*100\%\\ \\Y=75.6\%

Best regards.

3 0
2 years ago
What is water's density at 93 ∘C? Assume a constant coefficient of volume expansion. Express your answer with the appropriate un
Ganezh [65]

Answer:

982.5 kg/m³

Explanation:

When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:

ρ₁ = ρ₀/(1 + β*(t₁ - t₀))

Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.

At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C

ρ₁ = 1,000/(1 + 0.0002*(93 - 4))

ρ₁ = 1,000/(1+ 0.0178)

ρ₁ = 982.5 kg/m³

3 0
2 years ago
A student hears in chemistry class that a certain object is made of a pure substance. What can the student conclude about the ob
umka21 [38]
It has no other elements
5 0
1 year ago
Read 2 more answers
How many grams of NH3 can be prepared from the synthesis of 77.3 grams of nitrogen and 14.2 grams of hydrogen gas?
lbvjy [14]

Answer:

80.41 g

Explanation:

Data Given:

Mass of Nitrogen (N₂) = 77.3 g

Mass of Hydrogen (H₂) = 14.2 g

many grams of NH₃ = ?

Solution:

First we look at the balanced synthesis reaction

              N₂   +    3 H₂  ------—> 2 NH₃

             1 mol      3 mol

As 1 mole of Nitrogen react with 3 mole of hydrogen

Convert moles to mass

molar mass of N₂ = 2(14) = 28 g/mol

molar mass of H₂ = 2(1) + 2 g/mol

Now

                     N₂             +           3 H₂        ------—>      2 NH₃

             1 mol (28 g/mol)     3 mol(2g/mol)

                    28 g                        6 g

28 grams of N₂ react with 6 g of H₂  

So

if 28 grams of N₂ produces 6 g of H₂  so how many grams of N₂ will react with 14.2 g of H₂.

Apply Unity Formula

                 28 g of N₂ ≅ 6 g of H₂

                 X g of N₂ ≅ 14.2 g of H₂

Do cross multiply

                X g of N₂ = 28 g x 14.2 g / 6 g

                X g of N₂ = 66.3 g

As we have given with 77. 3 g of N₂ but from this calculation we come to know that 66.3 g will react with 14.2 g of hydrogen and the remaining 10 g N₂ will be in excess

So, Hydrogen is limiting reactant in this reaction and the amount of NH₃ depends on the amount of hydrogen.

Now

To find mass of NH₃ we will do following calculation

Look at the reaction

As we Know

                     N₂             +           3 H₂        ------—>      2 NH₃

                                                   6 g                            2 mol

So, 6 g of hydrogen gives 2 moles of NH₃, then how many moles of NH₃ will be produce by 14.2 g

Apply Unity Formula

                 6 g of H₂ ≅ 2 mol of NH₃

                14.2 g of H₂ ≅ X mol of NH₃

Do cross multiply

               X mol of NH₃= 14.2 g x 2 mol / 6 g

                X mol of NH₃ = 4.73 mol

So, 14.2 g of hydrogen gives 4.73 moles of NH₃

Now

Convert moles of NH₃ to mass

Formula will be used

        mass in grams = no. of moles x molar mass . . . . . . (2)

Molar mass of  NH₃

Molar mass of  NH₃ = 14 + 3(1)

Molar mass of  NH₃ = 14 + 3 = 17 g/mol

Put values in equation 2

        mass in grams = 4.73 mole x 17 g/mol

        mass in grams =  80.41 g

mass of NH₃=  80.41 g

3 0
1 year ago
What is the percent composition by mass of nitrogen in the compound N2H4 (gram-formula mass = 32 g/mol)?
Alex

Answer:

\large \boxed{93\, \% }

Explanation:

1. Calculate the molar mass of N₂H₄

2N = 2 × 14 = 28

4H = 2 ×  1  = <u>  4</u>

           Tot. = 32

2. Calculate the mass percent of N

\text{\% of element} = \dfrac{\text{mass of element}}{\text{mass of compound}} \times 100 \, \% = \dfrac{\text{28}}{\text{32}} \times 100 \, \% =\mathbf{88 \, \%}\\\\\text{The percentage of N in N$_{2}$H$_{4}$ is $\large \boxed{\mathbf{88\, \% }}$}}

3 0
2 years ago
Read 2 more answers
Other questions:
  • CH3CH2CH(Cl)CHO iupac name?
    12·1 answer
  • Which element from this portion of the table chemically reacts in a way similar to the way the element chlorine (Cl) reacts? (1)
    13·2 answers
  • A kettle of water is at 14.5°C. Its temperature is then raised to 50.0°C by supplying it with 5,680 joules of heat. The specific
    6·2 answers
  • When 2.36g of a nonvolatile solute is dissolved in 100g of solvent, the largest change in freezing point will be achieved when t
    14·1 answer
  • A 1.00 liter container holds a mixture of 0.52 mg of He and 2.05 mg of Ne at 25oC. Determine the partial pressures of He and Ne
    10·1 answer
  • A few drops of a mixture of sodium hydroxide(NaOH) solution and copper (II) tetraoxosulphate (VI) solution were added to a sampl
    15·1 answer
  • compare the C2-C3 bonds in propane,propene, and propane.Should they be any different with respect to either bond length or bond
    7·1 answer
  • Explain on the chemical structural basis why the products of the saponification reaction are soluble in water while the starting
    5·1 answer
  • How many atoms is 3.49x1032 moles of KOH?
    11·2 answers
  • a sample of double-stranded dna contains 42% cytosine. approximately what percent of the nucleotides in this sample will be thym
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!