Answer:
V2 = 6616 L
Explanation:
From the question;
Initial volume = 40L
Initial Pressure, P1 = 159atm
Initial Temperature T1 = 25 + 273 = 298K (Upon converting to Kelvin unit)
Final Volume, V2 = ?
Final Pressure, P2 = 1 atm
Final Temperature T2 = 37 + 273= 310K (Upon converting to Kelvin unit)
These quantities are related by the equation;
P1V1 / T1 = P2V2 / T2
V2 = T2 * P1 * V1 / T1 * P2
V2 = 310 * 159 * 40 / (298 * 1)
V2 = 6616 L
NiCl₂ commonly forms a green aqueous solution.
<span>2 KClO3(s) → 3 O2(g) + 2 KCl(s)
</span><span>Note: MnO2 (Manganese Dioxide) is not part of the reaction. A catalyst lowers the activation energy and increases both forward and reverse reactions at equal rates.
</span>
molar mass of KClO3 = 122.5
Moles of KClO3 = 3.45 / 122.55 = 0.028
Moles of O2 produce =

= 0.042 moles
molar mass of O2 = 32
so, mass of O2 = 32 x 0.042 = 1.35 g
The greatest amount of energy released per gram of reactants occurs during a (1) redox reaction, although it should be noted that there are exceptions depending on environment.
Answer:

Explanation:
Hello!
In this case, since these calorimetry problems are characterized by the fact that the calorimeter absorbs the heat released by the combustion of the substance, we can write:

Thus, given the temperature change and the total heat capacity, we obtain the following total heat of reaction:

Now, by dividing by the moles in 1.04 g of cyclopropane (42.09 g/mol) we obtain the enthalpy of combustion of this fuel:

Best regards!