Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products
Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.
For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.
Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.
Repeat the same process for C and D.
After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.
SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE
It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. At STP graphite and diamond are two solid forms of carbon, the statement that explains why these two forms of carbon differ in hardness is this: <span>Graphite and diamond have different molecular structures. Hope this helps.</span>
Simply put, MA = Force Out / Force in. That's the way it is usually stated. The force out is normally what you need to move. The force in is what you need to supply to get the force out. Most machines will give you an MA of more than 1. Some (like your arm) will give you less than 1 and others (like this one) will give you exactly one.
This one is frictionless, otherwise it would slip into less than one if it had friction.
Answer B
Answer:

Explanation:
Hello!
In this case, since the applied current for the 50.0 mins provides the following charge to the system:

As 1 mole of electrons carries a charge of 1 faraday, or 96,485 coulombs, we can compute the moles of electrons involved during the reduction:

Then the reduction of Ga³⁺ to Ga involves the transference of three electrons, we are able to compute the moles and therefore the mass of deposited gallium:

Best regards!