Answer:
Explanation:
Entropy change in the system : --
ΔG = −54 kJ⋅mol−1 (−13 kcal⋅mol−1) = −54 kJ⋅mol−1 (−13 x 4.2 kJ⋅mol−1)
= - 108.6 KJ / mol
ΔH = -251 kJ/mol (-60 kcal/mol) = -251 kJ/mol (-60 x 4.2 kJ/mol)
= - 503 KJ / mol
ΔG = ΔH - TΔS
ΔS = ( ΔH - ΔG ) / T
= - 503 + 108.6 / ( 273 + 25 ) KJ / mol k⁻¹
= - 1323.48 J / mol k⁻¹
Entropy change in the surrounding
+ 1323.48 J / mol k⁻¹
Answer : The complete chemical equation is,

Explanation :
As we know that, in a chemical equation the reacting species present on left side and the product formed present on right side and a right arrow inserted between the reactants and product that show a chemical reaction taking place.
In the chemical reaction, the phases of the substances are also included and subscripts and superscripts are also used for the numbers.
For the given chemical reaction, the balanced chemical equation including the phases, is given by:

Dalton's Law of Partial Pressures, commonly applied to ideal gases, explains that the partial pressures of individual, non-reacting gases are equal to the total pressure exerted by the gas mixture. The given gas mixture composed of 90% argon and 10% carbon dioxide has the following partial pressures: 3.6 atm for argon and 0.4 atm for carbon dioxide (answer).
Answer:
The molarity of the acid HX is 6.0 M.
Explanation:
We determine the amount of moles of KOH used to neutralize the acid:
=0.12 moles KOH
Then, we calculate the amount of moles of acid:
0.12 moles KOH×
=0.12 moles HX
The molarity of HX is:
=6.0 M