Answer:
Sigma bonds: 10
Pi bonds: 4
Explanation:
The compound described must be CH2=CH-CO-CH≡CH. If we look at the compound closely, we will notice that there are 10 sigma bonds and 4 pi bonds.
There are three pi bonds between carbon atoms and one pi bond between a carbon and an oxygen atom (C=O). All these can easily be seen in the structure of the formula chosen in this answer.
a) The least number of decimal points is 0 so you should round the answer to 43.
b) The least number of significant figures is 2 so round to 7.3
c)The least number of decimal places is 1 so round to 225.7
d) The least number of significant figures is 3 so round to 92.0
e) The least number of significant figures is 3 so round to 32.4
f) The least number of decimal places is 0 so round to 104m^3
Basically, for addition and subtraction round to the least number of decimal places found in the factors, and for multiplication and division round to the least number of significant figures found in the factors.
Pure water does
not have enough ions to conduct electricity. A mixture of metals such as iron,
zinc and copper in the wet soil can trigger electrolysis that requires excess
energy in the form of over potential to conduct electricity. The excess energy
is needed due to limited self-ionization of water. The wet soil then can
conduct current when positive and negative ions are present. The water ions begin
to flow from anode (positive electrode) to cathode (negative electrode) to be oxidize
and produce electricity.
<span> </span>
Answer:
Na₂CO₃.2H₂O
Explanation:
For the hydrated compound, let us denote is by Na₂CO₃.xH₂O
The unknown is the value of x which is the amount of water of crystallisation.
Given values:
Starting mass of hydrate i.e Na₂CO₃.xH₂O = 4.31g
Mass after heating (Na₂CO₃) = 3.22g
Mass of the water of crystallisation = (4.31-3.22)g = 1.09g
To determine the integer x, we find the number of moles of the anhydrous Na₂CO₃ and that of the water of crystallisation:
Number of moles = 
Molar mass of Na₂CO₃ =[(23x2) + 12 + (16x3)] = 106gmol⁻¹
Molar mass of H₂O = [(1x2) + (16)] = 18gmol⁻¹
Number of moles of Na₂CO₃ =
= 0.03mole
Number of moles of H₂O =
= 0.06mole
From the obtained number of moles:
Na₂CO₃ H₂O
0.03 0.06
Simplest
Ratio 0.03/0.03 0.03/0.06
1 2
Therefore, x = 2
Given: C= 81.70% = 81.70g
H = 18.29% = 18.29g
<span>The number of moles is given by: n= Given mass (m)/Molar Mass (M)
</span>M of C = 12 g/mol
M of H = 1 g/mol
Thus, the number of moles of carbon = 81.70g / 12gmol= 6.83moles
and, the number of moles of hydrogen = 18.29/1g/mol = 18.29 moles
The ration of C moles with hydrogen :
H:C = 18.29moles/6.83moles= 2.67 ≈3
Thus, the empirical formula is C3H8