Answer:
by using ideal gas law
Explanation:
ideal gas law:
PV=nRT
where:
P is pressure measured in Pascal (pa)
V is volume measured in letters (L)
n is number of moles
R is ideal gas constant
T is temperature measured in Kelvin (K)
by applying the given:
P(initial) V(initial)=nRT(initial)
P(final) V(final)=nRT(final)
nR is constant in both equations since same gas
then,
P(initial) V(initial) / T(initial) = P(final) V(final) / T(final)
then by crossing multiply both equations
V (final)= { (P(initial) V(initial) / T(initial)) T(final) } /P (final)
P(initial)=P(final)= 1 atm = 101325 pa
V(initial)= 6 L
T(initial) = 28°c = 28+273 kelvin
T(final) = 39°c = 39+273 kelvin
by substitution
V(final) = 6.21926 L
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
The solubility of NaCl in water at 100 C is 40%, meaning that we can dissolve 40 g NaCl in 100 g water. Assuming that dissolving NaCl does not add any volume to the solution, 600 mL of water is approximately equal to 600 g of water. By ratio and proportion: 40 g NaCl/100 g H2O = x g NaCl/600 g H2O
x = 240 g NaCl
So 240 g of NaCl must be dissolved to form a saturated solution.
Ferromagnesian silicate minerals (i looked it up)
Red #40 is soluble in water while zinc oxide is not.
So the easiest way to separate them is as follows:
1- add water to the mixture until red #40 is dissolved in the water
2- filter to separate the zinc oxide
4- heat the solution of red #40 and water until water evaporates and red#40 remains.