Answer:
58.6 % by mass of Na₂CO₃
Explanation:
This is the reaction:
Na₂CO₃ + MgCO₃ + 4HCl → MgCl₂ + 2NaCl + 2CO₂ + 2H₂O
Let's find out the moles of CO₂ produced, by the Ideal Gases Law
1.24 atm . 1.67 L = n . 0.082 . 299K
(1.24 atm . 1.67 L / 0.082 . 299K) = n
0.0844 moles = n
Ratio is 2:1, so 2 moles of dioxide were produced by 1 mol of sodium carbonate. Let's make a rule of three:
2 moles of CO₂ were produced by 1 mol of Na₂CO₃
Then, 0.0844 moles of Co₂ would beeen produced by (0.0844 .1)/2 = 0.0422 moles of Na₂CO₃.
Let's convert this moles into mass (mol . molar mass)
0.0422 mol . 106 g/mol = 4.47 g
Finally we can know the mass percent of sodium carbonate in the mixture
(Mass of compound /Total mass) . 100 → (4.47 g / 7.63g) . 100 = 58.6 %
601 expressed as an integer is 3.
An integer refers to a whole number, a number which do not contain any decimal point.
To express any given number as an integer, just count the number of significant figures in the number and write this down as a whole number.
Answer:
CaCl₂
Step-by-step explanation:
The <em>empirical formula</em> is the simplest whole-number ratio of atoms in a compound.
The ratio of atoms is the same as the ratio of moles.
So, our job is to calculate the molar ratio of Ca to Cl.
Data:
Mass of Ca = 3.611 g
Mass of Cl = 6.389 g
Calculations
Step 1. <em>Calculate the moles of each element
</em>
Moles of Ca = 3.611 g Ca × (1 mol Ca/(40.08 g Ca)= 0.090 10 mol Ca
Moles of Cl = 6.389 g Cl
Step 2. <em>Calculate the molar ratio of the elements
</em>
Divide each number by the smallest number of moles
Ca:Cl = 0.090 10:0.1802 = 1:2.000
Step 3. Round the molar ratios to the nearest integer
Ca:Cl = 1:2.000 ≈ 1:2
Step 4: <em>Write the empirical formula
</em>
EF = CaCl₂
There is this thing called isotopes
it means that atoms of the same element can have a different number of neutrons.
if there is a change in the no. of neutrons, there will definitely be a change in the mass number.
so the answer is A) mass number
Answer:
Exothermic reaction: In exothermic reaction, energy is transferred to the surroundings, and the surrounding temperature increases, this is known as exothermic reaction. In other words energy exits in exothermic reaction. Some example of exothermic reactions are:
1) Neutralisation reaction.
2) Combustion reaction.
3) Some oxidation reaction.
Endothermic reaction: In endothermic reaction, energy is taken in from the surrounding, and the surrounding temperature decreases, this is known as endothermic reaction. In other words energy enters in endothermic reaction. Some example of exothermic reactions are:
1) Thermal decomposition.
2) Reaction between citric acid and sodium hydrogen carbonate.