answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
1 year ago
11

explain how energy changes from one form to another in a exothermic reaction. in an endothermic reaction.

Chemistry
1 answer:
Alexxx [7]1 year ago
6 0

Answer:

Exothermic reaction: In exothermic reaction, energy is transferred to the surroundings, and the surrounding temperature increases, this is known as exothermic reaction. In other words energy exits in exothermic reaction. Some example of exothermic reactions are:

1) Neutralisation reaction.

2) Combustion reaction.

3) Some oxidation reaction.

Endothermic reaction: In endothermic reaction, energy is taken in from the surrounding, and the surrounding temperature decreases, this is known as endothermic reaction. In other words energy enters in endothermic reaction. Some example of exothermic reactions are:

1) Thermal decomposition.

2) Reaction between citric acid and sodium hydrogen carbonate.

You might be interested in
Give an example of a rule of the natural world that a scientist can assume is always true.
vaieri [72.5K]

Answer:

Laws of Nature are to be distinguished both from Scientific Laws and from Natural Laws. On the other account, the Necessitarian Theory, Laws of Nature are the principles which govern the natural phenomena of the world. That is, the natural world “obeys” the Laws of Nature.

4 0
1 year ago
Which will not appear in the equilibrium constant expression for the reaction below?
n200080 [17]

Answer:

[C] carbon solid

Explanation:

Pure solids and liquids are never included in the equilibrium constant expression because they do not affect the reactant amount at equilibrium in the reaction, thus since your equation has [C] as solid it will not be part of the equlibrium equation.

5 0
2 years ago
COCl2(g) decomposes according to the equation above. When pure COCl2(g) is injected into a rigid, previously evacuated flask at
mestny [16]

<u>Answer:</u> The value of K_p for the reaction at 690 K is 0.05

<u>Explanation:</u>

We are given:

Initial pressure of COCl_2 = 1.0 atm

Total pressure at equilibrium = 1.2 atm

The chemical equation for the decomposition of phosgene follows:

                  COCl_2(g)\rightleftharpoons CO(g)+Cl_2(g)

Initial:            1                    -         -

At eqllm:       1-x                 x        x

We are given:

Total pressure at equilibrium = [(1 - x) + x+ x]

So, the equation becomes:

[(1 - x) + x+ x]=1.2\\\\x=0.2atm

The expression for K_p for above equation follows:

K_p=\frac{p_{CO}\times p_{Cl_2}}{p_{COCl_2}}

p_{CO}=0.2atm\\p_{Cl_2}=0.2atm\\p_{COCl_2}=(1-0.2)=0.8atm

Putting values in above equation, we get:

K_p=\frac{0.2\times 0.2}{0.8}\\\\K_p=0.05

Hence, the value of K_p for the reaction at 690 K is 0.05

3 0
1 year ago
A 0.307-g sample of an unknown triprotic acid is titrated to the third equivalence point using 35.2 ml of 0.106 m naoh. calculat
Jet001 [13]
Triprotic acid is a class of Arrhenius acids that are capable of donating three protons per molecule when dissociating in aqueous solutions.  So the chemical reaction as described in the question, at the third equivalence point, can be show as: H3R + 3NaOH ⇒ Na3R + 3H2O, where R is the counter ion of the triprotic acid. Therefore, the ratio between the reacted acid and base at the third equivalence point is 1:3. 
The moles of NaOH is 0.106M*0.0352L = 0.003731 mole.  So the moles of H3R is 0.003731mole/3=0.001244mole.
The molar mass of the acid can be calculated: 0.307g/0.001244mole=247 g/mol.
6 0
2 years ago
What is the yield of uranium from 2.50 kg U3O8?
mr_godi [17]

Answer: Thus the yield of uranium from 2.50 kg U_3O_8 is 2.12 kg

Explanation:

According to avogadro's law, 1 mole of every substance weighs equal to molecular mass and contains avogadro's number (6.023\times 10^{23}) of particles.

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{molar mass}}

moles of U_3O_8=\frac{2.50\times 1000g}{842g/mol}=2.97mol    (1kg=1000g)

As 1 mole of U_3O_8 contains = 3 moles of U

2.97 mole of U_3O_8 contains = \frac{3}{1}\times 2.97=8.91moles moles of U

Mass of Uranium=moles\times {\text {Molar mass}}=8.91mol\times 238g/mol=2120g=2.12kg  

 ( 1kg=1000g)

Thus the yield of uranium from 2.50 kg U_3O_8 is 2.12 kg

8 0
1 year ago
Other questions:
  • 30 Which radioisotopes have the same decay mode
    10·1 answer
  • You are given two unknown solutions, A and B. One of the solutions contains water and table salt, and the other contains water a
    12·2 answers
  • Using the equation, C5H12 + 8O2 Imported Asset 5CO2 + 6H2O, if an excess of pentane (C5H12) were supplied, but only 4 moles of o
    9·2 answers
  • Tracie measured 87.47 mg of cholesterol in 0.03 mL of blood. What is the density of this mixture in g/mL?
    5·1 answer
  • 32. Mercury has an atomic mass of 200.59 amu. Calculate the a. Mass of 3.0 x 1023 atoms. b. Number of atoms in one nanogram of M
    10·2 answers
  • Calculate the amount of water required to prepare 500g of 2.5% solution of sugar.
    5·1 answer
  • Which of the following species is not formed through a termination reaction in the chlorination of methane? Which of the followi
    10·1 answer
  • Top-level predators such as wolves and lions are categorized in the highest trophic levels in their food webs Where does the ene
    8·2 answers
  • An ion with 5 protons, 6 neutrons and a charge of 3+ has an atomic number of ____.
    11·2 answers
  • n the table below, write the density of each object. Then predict whether the object will float or sink in each of the fluids. W
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!