Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
Ikr behehbenekebe sgwhebejebeb
Answer : The correct option is, 
Explanation :
Formula used :
where,
= heat released = 24 KJ
= mass of bomb calorimeter = 1.30 Kg
= specific heat =
= final temperature = ?
= initial temperature =
Now put all the given values in the above formula, we get the final temperature of the calorimeter.

Therefore, the final temperature of the calorimeter is, 
Some of the particles undergo a phase change and become a gas due to burning. An example would be CO2, which is lost in the air around/escapes into the atmosphere. Hope that helps!
<h3><u>Answer</u>;</h3>
= 4.68 K
<h3><u>Explanation</u>;</h3>
According to the combined gas law;
P1V1/T1 = P2V2/T2
Given; P1 = 125 Psi
V1 = 75 L
T1 = 288 K
P2 = 25 PSI
V2 =6.1 L
Therefore;
T2 = P2V2T1/P1V1
= (25×6.1 ×288)/(125×75)
= 4.6848
= 4.68 K