Answer: Elastic
Explanation: Both Objects had there momentum and kinetic energy conserved.
Answer:
False. It should read that both plant and animal species are in danger of extinction, and climate change can destroy habitats.
Explanation:
Answer: It will occupy
at the same temperature and 475 mm Hg.
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
(At constant temperature and number of moles)
where,
= initial pressure of gas = 760 mm Hg
= final pressure of gas = 475 mm Hg
= initial volume of gas = 
= final volume of gas = ?
Putting in the values:

Thus it will occupy
at the same temperature and 475 mm Hg
Explanation:
Below is an attachment containing the solution.
Answer:
E. CH₄ < CH₃Cl < CH₃OH < RbCl
Explanation:
The molecule with the stronger intermolecular forces will have the higher boiling point.
The order of strength of intermolecular forces (strongest first) is
- Ion-Ion
- Hydrogen bonding
- Dipole-dipole
- London dispersion
RbCl is a compound of a metal and a nonmetal. It is an ionic compound, so it has the highest boiling point.
CH₃Cl has a C-Cl polar covalent bond. It has dipole-dipole forces, so it has the second lowest boiling point.
CH₃OH has an O-H bond. It has hydrogen bonding, so it has the second highest boiling point.
CH₄ has nonpolar covalent C-H bonds. It has only nonpolar bonds, so the only attractive forces are London dispersion forces. It has the lowest boiling point.
Thus, the order of increasing boiling points is
CH₄ < CH₃Cl < CH₃OH < RbCl