Answer:
a. the maximum number of σ bonds that the atom can form is 4
b. the maximum number of p-p bonds that the atom can form is 2
Explanation:
Hybridization is the mixing of at least two nonequivalent orbitals, in this case, we have the mixing of one <em>s, 3 p </em> and <em> 2 d </em> orbitals. In hybridization the number of hybrid orbitals generated is equal to the number of pure atomic orbital, so we have 6 hybrid orbital.
The shape of this hybrid orbital is octahedral (look the attached image) , it has 4 orbital located in the plane and 2 orbital perpendicular to it.
This shape allows the formation of maximum 4 σ bond, because σ bonds are formed by orbitals overlapping end to end.
And maximum 2 p-p bonds, because p-p bonds are formed by sideways overlapping orbitals. The atom can form one with each one of the orbitals located perpendicular to the plane.
Thermal energy will flow from an object high temperature to an object of low one. In this case, the thermal energy will flow from object B to object A.
Answer:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
Explanation:
We'll begin by writing the dissociation equation for aqueous AgNO₃ and KI.
Aqueous AgNO₃ and KI will dissociate in solution as follow:
AgNO₃ (aq) —> Ag⁺(aq) + NO₃¯ (aq)
KI (aq) —> K⁺(aq) + I¯(aq)
Aqueous AgNO₃ and KI will react as follow:
AgNO₃ (aq) + KI (aq) —>
Ag⁺(aq) + NO₃¯ (aq) + K⁺ (aq) + I¯(aq) —> AgI (s) + K⁺ (aq) + NO₃¯ (aq)
Cancel out the spectator ions (i.e ions that appears on both sides of the equation) to obtain the net ionic equation. The spectator ions are K⁺ and NO₃¯.
Thus, the net ionic equation is:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
<span>Well... first, let's recognize that the chemical formula for chlorodifluoromethane is CHClF2. Count out how many valence electrons there are. C = 4, H = 1, Cl = 7, F (X2) = 14. Total is 26. Let's put C as the central atom, and put the other elements surrounding it. Draw a pair of electrons beach each element and the central atom. Then fill the halogen elements with 3 pairs of electrons each to fill their octets. Count out how many dots you have. There should be 26, making this the correct lewis structure!
Remember, hydrogen doesn't have a full octet, only a maximum of two electrons.</span>