Answer:
Clavulanic acid has two (2) chiral centers.
Explanation:
A chiral center is a center (usually carbon) with four different substituents.
The structure of clavulanic acid is shown in the attachment below.
Consider the labeled diagram in the attachment,
Carbon A is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon B is not a chiral carbon because it has only three substituents
Carbon C is a chiral carbon because it has four different substituents
Carbon D is a chiral carbon because it has four different substituents
Carbon E is not a chiral carbon because it has only three atoms directly attached to it
Carbon F is not a chiral carbon because it has only three atoms directly attached to it
Carbon G is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon H is not a chiral carbon because it has only three substituents
Then, only carbons C and D are chiral carbons.
Hence, clavulanic acid have two (2) chiral centers.
AgI has a higher melting point than vanillin because it is an ionic compound. The bonds are held more tightly together than in vanillin because it is a covalent compound. Ionic bonds have a higher melting point because the electrons are being transferred from one atom to the other.
Meta oxides are compounds that are formed by reaction of metals with oxygen. If these compounds are placed in water, the ionic components of this substance will dissociate.
The dissociation of metal oxides in water will likely form,
2M³⁺ + 3O²⁻
Answer:
d.) It is a binary molecular compound.
Explanation:
The compound in question has a formula
. The compound is not acidic in nature and the element 'M' is not a metal. This shows that the compound does not contain any metal. Based on the definition of a binary molecular compound as a compound comprising elements that are not metals. Therefore, the compound is obviously a binary molecular compound.
We should apply Boyle's Law here given initial pressure, initial volume and final volume.
P1V1= P2V2
(6.5 atm) (13 L) = P2 (3.3 L)
Solve for P2 on your calculator and that should get you to the answer.