solution:
Weight of caffeine is W = 0.170 gm.
Volume of water is V= 10 ml
Volume of methylene chloride which extracted caffeine is v= 5ml
No of portions n=3
Distribution co-efficient= 4.6
Total amount of caffeine that can be unextracted is given by
![w_{n}=w\times[\frac{k_{Dx}v}{k_{Dx}v+v}]^n\\w_{3}=0.170[\frac{4.6\times10}{(4.6\times10+5)}]^3\\=0.170[\frac{46}{46+5}]^3\\=0.170[\frac{46}{51}]^3\\=0.170[\frac{97336}{132651}]\\=0.170\times0.734=0.125gms](https://tex.z-dn.net/?f=w_%7Bn%7D%3Dw%5Ctimes%5B%5Cfrac%7Bk_%7BDx%7Dv%7D%7Bk_%7BDx%7Dv%2Bv%7D%5D%5En%5C%5C%3C%2Fp%3E%3Cp%3Ew_%7B3%7D%3D0.170%5B%5Cfrac%7B4.6%5Ctimes10%7D%7B%284.6%5Ctimes10%2B5%29%7D%5D%5E3%5C%5C%3C%2Fp%3E%3Cp%3E%3D0.170%5B%5Cfrac%7B46%7D%7B46%2B5%7D%5D%5E3%5C%5C%3C%2Fp%3E%3Cp%3E%3D0.170%5B%5Cfrac%7B46%7D%7B51%7D%5D%5E3%5C%5C%3C%2Fp%3E%3Cp%3E%3D0.170%5B%5Cfrac%7B97336%7D%7B132651%7D%5D%5C%5C%3C%2Fp%3E%3Cp%3E%3D0.170%5Ctimes0.734%3D0.125gms)
amount of caffeine un extracted is 0.125gms
amount of caffeine extracted=0.170-0.125
=0.045 gms
Answer : The normality of the solution is, 30.006 N
Explanation :
Normality : It is defined as the number of gram equivalent of solute present in one liter of the solution.
Mathematical expression of normality is:

or,

First we have to calculate the equivalent weight of solute.
Molar mass of solute
= 94.97 g/mole

Now we have to calculate the normality of solution.

Therefore, the normality of the solution is, 30.006 N
Absorbance is related to the concentration of a substance using the Beer-Lambert's Law. According to this law, absorbance is linearly related to concentration. However, this is only true up to a certain concentration depending on the substance. For this case, we assume that the said law is applicable.
A = kC
Using the first conditions, ewe solve for k.
0.26 = k (0.10)
k = 2.6
A = kC
A = 2.6 (0.20) = 0.52
Therefore, the absorbance at a concentration of 0.20 M and wavelength of 500nm is 0.52.
The answer is (4) Add enough solvent to 30.0 g of solute to make 1.0 L solution. The molarity is calculated using volume of the solution. When solute dissolving, the total volume will change. So the final volume of solution need to be 1.0 L.
Answer:
RbOH → Rb⁺ + OH⁻
As the hydroxide can gives the OH⁻ in water, it is considered as an Arrhenius's base
Explanation:
Arrhenius theory states that a compound is considered a base, if the compound can generate OH⁻ ions in aqueous solution.
Our compound is the RbOH.
When it is put in water, i can dissociate like this:
RbOH → Rb⁺ + OH⁻
As the hydroxide can gives the OH⁻ in water, it is considered as an Arrhenius's base