Answer:
Gamma
Explanation:
I'm not sure how to do it without calculations but:
E=hv
7*10^7 J/mol=6.626*10^34 Js * v
v=1*10^41
Gamma rays.
More here: https://www.hasd.org/faculty/AndrewSchweitzer/spectroscopy.pdf
Answer:
3.
Explanation:
There are four nitrogenous bases in a DNA including guanine (G), adenine (A), cytosine (C) and Thymine (T) and together they form the nitrogenous base sequence arranged in a specific order of three letters such as GAC and TAG to form a genetic code.
These nitrogenous base sequences forming genetic code are amino acid specific and determine the amino acid sequence in DNA. for example: CTT determines leucine and GTT determines valine.
Hence, the correct option is "3".
<u>Answer:</u> The initial amount of Uranium-232 present is 11.3 grams.
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 206.7 yrs
= initial amount of the reactant = ?
[A] = amount left after decay process = 1.40 g
Putting values in above equation, we get:
![0.0101yr^{-1}=\frac{2.303}{206.7yrs}\log\frac{[A_o]}{1.40}](https://tex.z-dn.net/?f=0.0101yr%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B206.7yrs%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B1.40%7D)
![[A_o]=11.3g](https://tex.z-dn.net/?f=%5BA_o%5D%3D11.3g)
Hence, the initial amount of Uranium-232 present is 11.3 grams.