Answer:
In the attached image the Lewis equation is shown where it is shown how two oxygens react with two hydrogens to meet the octet of the electrons.
Explanation:
Hydrogen peroxide is one of the most named chemicals since it is not only sold as "hydrogen peroxide" in pharmacies but it is also one of the great weapons of immune defense cells to defend ourselves against anaerobic bacteria.
The disadvantage of this compound is that when dividing it forms free oxygen radicals that are considered toxic or aging for our body.
Answer:
DNA between a human and a banana is 41 percent similar.
Explanation:
In this question we need to find the new volume of the gas. Since we have been given the pressure and temperature change, we can used to combined gas law equation.

the parameters for 1st instance are given on the left side and parameters for the second instance are given on the right side of the equation
(319 mmHg x 0.558 L)/ 115 K = (215 mmHg x V)/387 K
V = 2.79 L
This method of quantitative determination of percent purity is titrimetric reactions. These reactions most commonly involve neutralization reactions between an acid and a base. Then, we look at the neutralization reaction:
H₂C₂O₄ + 2 NaOH ⇒ Na₂C₂O₄ + 2 H₂O
So, we do the stoichiometric calculations. The important data we should know is the molar mass of oxalic acid which is equal to 90 g/mol.
(0.2283 mol/L NaOH * 0.3798 L * 1 mol H₂C₂O₄/ 2mol NaOH * 90 g/mol H₂C₂O₄) ÷ 0.7984 g *100%
= 488%
This is impossible. The purity can't be more than 100%. Looking at our calculations and the balance reaction, all steps were done correctly. So, I think there is some typographical error in the given. The mass of the sample should be 7.984 g. Then, the answer would be 48.87% purity.
Answer:
The plane with aluminium can lift more mass of passangers than the plane of steel.
Explanation:
The total mass the airplane canc lift is:

For aluminium:


and
![V_{fuselage}=\frac{\pi *L}{4}*[D^2-(D-e)^2]](https://tex.z-dn.net/?f=V_%7Bfuselage%7D%3D%5Cfrac%7B%5Cpi%20%2AL%7D%7B4%7D%2A%5BD%5E2-%28D-e%29%5E2%5D)
where:
- L is lenght
- D is diameter
- e is thickness
![m_{tot}=\delta _{Al}*\frac{\pi *L}{4}*[D^2-(D-e)^2]+m_{pas-Al}](https://tex.z-dn.net/?f=m_%7Btot%7D%3D%5Cdelta%20_%7BAl%7D%2A%5Cfrac%7B%5Cpi%20%2AL%7D%7B4%7D%2A%5BD%5E2-%28D-e%29%5E2%5D%2Bm_%7Bpas-Al%7D)
For steel (same procedure):
![m_{tot}=\delta _{Steel}*\frac{\pi *L}{4}*[D^2-(D-e)^2]+m_{pas-Steel](https://tex.z-dn.net/?f=m_%7Btot%7D%3D%5Cdelta%20_%7BSteel%7D%2A%5Cfrac%7B%5Cpi%20%2AL%7D%7B4%7D%2A%5BD%5E2-%28D-e%29%5E2%5D%2Bm_%7Bpas-Steel)
Knowing that the total mass the airplane can lift is constant and that aluminum has a lower density than the steel, we can afirm that the plane with aluminium can lift more mass of passangers.
Also you can estimate an average weight of passanger to estimate a number of passangers it can lift.