First step is to balance the reaction equation. Hence we get
P4 + 5 O2 => 2 P2O5
Second, we calculate the amounts we start with
P4: 112 g = 112 g/ 124 g/mol – 0.903 mol
O2: 112 g = 112 g / 32 g/mol = 3.5 mol
Lastly, we calculate the amount of P2O5 produced.
2.5 mol of O2 will react with 0.7 mol of P2O5 to produce 1.4
mol of P2O5.
This is 1.4 * (31*2 + 16*5) = 198.8 g
Given parameters:
Mass of sucrose = 5g
Density of sucrose = 1.12g/mL
Percentage of sucrose per liter of cane juice = 12%
Unknown:
Volume of cane juice needed = ?
We need to establish the volume - density relationship. Density is the mass of a substance per unit volume.
Mathematically;
Density =
Now solve for the volume of sucrose;
1.12g/mL =
Volume =
= 4.46mL = 4.46 x 10⁻³L since 1000mL = 1L
Since 12% of 1 liter of cane juice is sucrose;
12% of x liter of cane juice = 4.46 x 10⁻³L
Volume of cane juice = 4.46 x 10⁻³ x
= 0.037L
Volume of cane juice is 0.037L
The rate constant, k, for the decomposition reaction : k = 0.0124 / days
<h3>Further explanation</h3>
Given
The half-life of 56 days
Required
The rate constant, k
Solution
For first-order, rate law : ln[A]=−kt+ln[A]o
The half-life : the time required to reduce to half of its initial value.
The half life :
t1/2 = (ln 2) / k
k = (ln 2) / t1/2
k = 0.693 / 56 days
k = 0.0124 / days
Answer:
Rotational spectroscopy, the dipole moment must change during the transition.
Rotational Raman spectroscopy, molecule must have anisotropic polarizability
Vibrational and electronic spectroscopy, molecule must have permanent dipole moment.
Explanation:
-
For the vibration rotation spectrum to be observed, it is necessary to change the dipole moment during the vibration.
- Raman scattering using an anisotropic crystal gives information about the orientation of the crystal. The polarization of Raman scattering light relative to the crystal, and the polarization of laser light, can be used to determine the orientation of the crystal, provided the crystal structure is known.