Answer:
The final volume is 39.5 L = 0.0395 m³
Explanation:
Step 1: Data given
Initial temperature = 200 °C = 473 K
Volume = 0.0250 m³ = 25 L
Pressure = 1.50 *10^6 Pa
The pressure reduce to 0.950 *10^6 Pa
The temperature stays constant at 200 °C
Step 2: Calculate the volume
P1*V1 = P2*V2
⇒with P1 = the initial pressure = 1.50 * 10^6 Pa
⇒with V1 = the initial volume = 25 L
⇒with P2 = the final pressure = 0.950 * 10^6 Pa
⇒with V2 = the final volume = TO BE DETERMINED
1.50 *10^6 Pa * 25 L = 0.950 *10^6 Pa * V2
V2 = (1.50*10^6 Pa * 25 L) / 0.950 *10^6 Pa)
V2 = 39.5 L = 0.0395 m³
The final volume is 39.5 L = 0.0395 m³
ANSWER: B. 20 grams since no matter was added or removed
Hope it helps!
The equilibrium constant Kc for this reaction is calculated as follows
from the equation N2 + 3H2 =2 NH3
qc = (NH3)2/{(N2)(H2)^3}
Qc is therefore = ( 0.001)2 /{(0.1) (0.05)^3} = 0.08
Answer: The change in enthalpy will be -13.
Explanation:-
Endothermic reactions are those in which heat is absorbed by the system and exothermic reactions are those in which heat is released by the system.
for Endothermic reaction is positive and
for Exothermic reaction is negative.

When 1 mole of A combining with 1 mole of B to produce 3 moles of C
Thus as the stoichiometry has got half of the original , enthalpy of the reaction will also get half.
Thus for reaction :

Thus the change in enthalpy will be -13.