Answer:
Xenon
Explanation:
Step 1: Given data
- Pressure (P): 1.00 atm (I looked it up)
Step 2: Convert the temperature to Kelvin
K = °C + 273.15 = 100.0°C + 273.15 = 373.2 K
Step 3: Calculate the number of moles (n)
We will use the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.00 atm × 0.335 L / (0.0821 atm.L/mol.K) × 373.2 K
n = 0.0109 mol
Step 4: Calculate the molar mass of the gas
M = 1.44 g / 0.0109 mol = 132 g/mol
Step 5: Identify the gas
The gas with a molar mass of about 132 g/mol is xenon.
Answer:
Number of moles nitric acid in the cylinder is 400.539g/mol.
Explanation:
From the given,
Weight of empty gas cylinder
= 30.01 g/mol
Number of moles nitric acid =
=?
The mass of nitric acid in the cylinder = 

Number of moles of nitric acid =

Therefore, number of moles nitric acid in the cylinder is 400.539g/mol.
The oxidation state of potassium ion K = +1
The oxidation state of oxygen ion O = -2
So, the oxidation state of O2 is = -2 x 2 = -4
Since, KBrO2 is neutral so,
(+1) + (x) + (-4) = Zero
-3 + X = Zero
So, X = +3
The oxidation state of individual bromine atom in KBrO2 is +3
Instrumental methods of analysis rely on machines.The visualization of single molecules, single biological cells, biological tissues and nanomaterials is very important and attractive approach in analytical science.
There are several different types of instrumental analysis. Some are suitable for detecting and identifying elements, while others are better suited to compounds. In general, instrumental methods of analysis are:
-Fast
-Accurate (they reliably identify elements and compounds)
-Sensitive (they can detect very small amounts of a substance in a small amount of sample)
The correct answer is 1. Lose electrons and become positive ions.
I hope my answer was beneficial to you! c: