Volume = Mass / Density
Volume = 540g / 2.70 g/ml
Volume = 200 ml
Answer:
Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.
Explanation:
When you make a calibration curve in a spectrophotographic analysis you are applying the Lambert-Beer law that states the concentration of a compound is directely proportional to its absorbance:
A = E*l*C
<em>Where A is absorbance, E is molar absorption coefficient, l is optical path length and C is molar concentration</em>
<em />
Using the equation of the line you obtain:
y = 4541.6X + 0.0461
<em>Where Y is absorbance and X is concentration -We will assume concentration is given in molarity-</em>
As absorbance of the unknown is 0.410:
0.410 = 4541.6X + 0.0461
X = 8.01x10⁻⁵M
<h3>Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.</h3>
<em />
Molybdenum Arsenide
I think that’s right but not %100 sure
[OH⁻] = 1.6 × 10⁻⁸ mol / dm³
<h3>Explanation</h3>
By definition,
, where
is the concentration of proton in the solution.
pH = 6.2 for this solution. As a result,
.
, where
the concentration of hydroxide ions and
is the dissociation constant of water.
at 0.10 MPa and 25 °C. As a result,
.