Assuming the question refers to LiCl (Lithium chloride) which has a molecular weight 42.39. <span>Avogadro's constant states there are 6.022 141 79x1023 molecules per mole </span><span>9.34 g LiCl is 9.34/42.39 mole (0.220 mole) LiCl </span>
<span>The number of molecules is therefore 6.022 141 79x1023x 0.220 =1.326x1023 molecules</span>
Answer:
The correct answer is 1 NADH is generated by the oxidation of glucose-6-phosphate.
Explanation:
Pentose phosphate pathway deals with the utilization of glucose-6-phosphate by oxidation process to form 6-phosphogluconolactone by the catalytic activity of glucose-6-phosphate dehydrogenese.
This enzyme need NAD+ as co enzyme which get reduced to generate NADH.
265.2 mmHg is the partial pressure of oxygen in 780 mmHg of total pressure.
Explanation:
The partial pressure of a gas is defined as the individual pressure of the gas in total mixture. In an ideal gas all the constituent gases have partial pressure some of which will give total pressure of the gas.
The partial pressure of a gas is calculated by
total pressure x mole fraction of the gas.
Mole fraction of the oxygen present is 0.34 as it is 34% of the total gas.
= 0.34 is the mole fraction
Total pressure is given as 780 mm Hg
The partial pressure can be calculated using the above formula:
Putting the values in equation:
780 x 0.34
= 265.2 mm Hg is the partial pressure of oxygen.
Answer: The correct answer is "B" two bonding domains(or bonding pairs) or two non bonding domains(or lone pairs)
Explanation:
Molecular geometry/structure is a three dimensional shape of a molecule. It is basically an arrangement of atoms in a molecule.It is determined by the central atom, its surrounding atoms and electron pairs.According to VSEPR theory, there are 5 basic shapes of a molecule: linear, trigonal planar, tetrahedral, trigonal bipyramidal and octahedral.
A)Four bonding domains and zero non bonding domains: shape is tetrahedral and bond angle is 109.5°
B)Two bonding domains and two non bonding domains(lone pairs): shape is bent and bond angle is 104.5°
C)Three bonding domains and one non bonding domain: shape is trigonal pyramidal and bond angle is 107°
D)Two bonding domain and zero non bonding domain: shape is linear and bond angle is 107°
E)Two bonding domain and one non bonding domain: bent shape and bond angle is 120°
F)Three bonding domains and zero nonbonding domain: shape is trigonal planar and bond angle is 120°
Hence Two bonding domains and two non bonding domains have the smallest bond angle.
Electrons are orbiting around the nucleus in a specific energy level as described in Bohr's atomic model. There are 7 energy levels all in all; 1 being the strongest and nearest to the nucleus, and 7 being the weakest and farthest away from the nucleus. Electron can transfer from one energy level to another. If it increases energy, it absorbs energy. If it goes down an energy level, it emits energy in the form of light. This light can be measure in wavelength through the Rydberg equation:
1/λ =R(1/n₁² -1/n₂²), where
λ is the wavelength
R is the Rydberg constant equal to 1.097 × 10⁻7<span> per meter
n</span>₁ and n₂ are the energy levels such that n₂>n₁
In the Paschen series is an emission spectrum of hydrogen when the energy level is at least n=4. So, this covers n=4 to n=7.
1/λ =(1.097 × 10⁻7)(1/4² -1/7²)
λ = 216.57 ×10⁻⁶ m or 216.57 μm