Answer: Option (B) is the correct answer.
Explanation:
According to the given reaction equation, formula to calculate
is as follows.
= coefficients of gaseous products - gaseous reactants
= 1 - 0
= 1
Also we know that,



For the equation, 
Activity of solid and liquid = 1
As, 

Hence,
= 0.0056 atm
Thus, we can conclude that partial pressure of oxygen gas at equilibrium is 0.0056 atm.
Hydrogen bonds are approximately 5% of the bond strength of covalent C-C or C-H bonds.
Hydrogen bonds strength in water is approximately 20 kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0,057 = 5,7 %.
Answer:
MnO- Manganese Oxide
Explanation:
Empirical formula: This is the formula that shows the ratio of elements
present in a
compound.
How to determine Empirical formula
1. First arrange the symbols of the elements present in the compound
alphabetically to determine the real empirical formula. Although, there
are exceptions to this rule, E.g H2So4
2. Divide the percentage composition by the mass number.
3. Then divide through by the smallest number.
4. The resulting answer is the ratio attached to the elements present in
a compound.
Mn O
% composition 72.1 27.9
Divide by mass number 54.94 16
1.31 1.74
Divide by the smallest number 1.31 1.31
1 1.3
The resulting ratio is 1:1
Hence the Empirical formula is MnO, Manganese oxide
Answer : The correct option is, 
Explanation :
Formula used :
where,
= heat released = 24 KJ
= mass of bomb calorimeter = 1.30 Kg
= specific heat =
= final temperature = ?
= initial temperature =
Now put all the given values in the above formula, we get the final temperature of the calorimeter.

Therefore, the final temperature of the calorimeter is, 
Answer: Option (A) is the correct answer.
Explanation:
Newton's third law states that when one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
In short we can say that every action has an equal and opposite reaction.
For example, when we hit a wooden table hardly with our hands then we are applying a force on the table and on the other hand table is applying a force in the opposite direction on our hand due to which we get hurt.
Therefore, when force of gravity pulls the man in downward direction then man pulling upward on the earth is applying a force in opposite direction of gravitational pull.