The correct answer is the second option. A strong acid contributes the most hydronium ions in a solution. When an acid is in aqueous form, it dissociates into ions namely where one of the ions are hydronium ions. If the acid is a strong one, the ions dissociates completely contributing more hydronium ions.
This name is phosphine flammable , toxic gas colourless
...it's formula is PH3
Br2 == 2Br
24% dissociated => n total moles, 0.24 mol*n of Br, and 0.76*n mol of Br2
=> partial pressure of Br, P Br = 0.24 bar, and
partical pressure of Br2, P Br2 = 0.76 bar
kp = (P Br)^2 / P Br2 = (0.24)^2 / 0.76 = 0.0758
Answer:
The atomic mass of second isotope is 7.016
Explanation:
Given data:
Average Atomic mass of lithium = 6.941 amu
Atomic mass of first isotope = 6.015 amu
Relative abundance of first isotope = 7.49%
Abundance of second isotope = ?
Atomic mass of other isotope = ?
Solution:
Total abundance = 100%
100 - 7.49 = 92.51%
percentage abundance of second isotope = 92.51%
Now we will calculate the mass if second isotope.
Average atomic mass of lithium = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
6.941 = (6.015×7.49)+(x×92.51) /100
6.941 = 45.05235 + (x92.51) / 100
6.941×100 = 45.05235 + (x92.51)
694.1 - 45.05235 = (x92.51)
649.04765 = x
92.51
x = 485.583 /92.51
x = 7.016
The atomic mass of second isotope is 7.016
Answer: Option (5) is the correct answer.
Explanation:
An ionic bond is formed by transfer of electrons between the two chemically combining atoms. Whereas a covalent bond is defined as the bond formed by sharing of electrons between the two chemically combining atoms.
When electronegativity difference is from 0.0 to 0.4 then bond formed between the two atoms is non-polar covalent in nature.
When electronegativity difference is greater than 0.4 and less than 1.7 then bond between the two atoms is a polar covalent bond.
When electronegativity difference is 1.7 or greater than the bond formed is ionic in nature.
Therefore, electronegativity difference of the given species is as follows.
Si-P = 2.1 - 1.8 = 0.3
Si-Cl = 3.0 - 1.8 = 1.2
Si-S = 2.5 - 1.8 = 0.7
Thus, we can conclude that given bonds are placed in order of increasing ionic character as follows.
Si-P < Si-S < Si-Cl