Although the process varies slightly from one material to another, the general process is as follows:
1) Choose an appropriate container for the solid. This may be a petri dish or a beaker in which you want to prepare the solution of the solid or any other lab equipment.
2) Place the container on a mass balance, then turn the balance on. The mass balance will automatically zero-out the mass of the container, so that any mass that you add on the container will be the mass of the solid. Alternatively, you may first measure the mass of the empty container alone.
3) Add the solid using a lab spatula. The solid should be added more slowly when the reading on the scale comes close to the desired value.
4) Remove the container from the mass balance after the desired amount of solid has been added.
Remember: heat lost = heat gained
When calculating heat loss or gain, remember
mass*(spec heat cap)*(change in T)
The unknown loses heat- we don't know the spec heat cap, so we'll call it x.
The water gains. I've omitted the units, but always use when solving problems on your own.
75*x*(96.5-37.1) = 1150*4.184*(37.1-25)
<span>
Now it's all set up- use algebra to get x, the spec heat cap of the unk in J/g*degC
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
<h2>Answer:</h2>
The mass of the system will remain the same if there is no conversion of mass to energy in the reaction.
<h3>Explanation:</h3>
- If the system is closed, then according to the law of mass conservation the mass of the reaction system will remain the same.
- <u><em>Law of conservation of the mass: In simple words, it is described as the mass of a closed system can never be changed, it may transfer from one form to another or change into energy.</em></u>
- But if the reaction involves energy transfer like heat or light production, in this case, the mass can be changed.
The composite material is composed of carbon fiber and epoxy resins. Now, density is an intensive unit. So, to approach this problem, let's assume there is 1 gram of composite material. Thus, mass carbon + mass epoxy = 1 g.
Volume of composite material = 1 g / 1.615 g/cm³ = 0.619 cm³
Volume of carbon fibers = x g / 1.74 g/cm³
Volume of epoxy resin = (1 - x) g / 1.21 g/cm³
a.) V of composite = V of carbon fibers + V of epoxy resin
0.619 = x/1.74 + (1-x)/1.21
Solve for x,
x = 0.824 g carbon fibers
1-x = 0.176 g epoxy resins
Vol % of carbon fibers = [(0.824/1.74) ÷ 0.619]*100 =<em> 76.5%</em>
b.) Weight % of epoxy = 0.176 g epoxy/1 g composite * 100 = <em>17.6%</em>
Weight % of carbon fibers = 0.824 g carbon/1 g composite * 100 = <em>82.4%</em>
I dont know but do you know da wae brudda?