answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
2 years ago
5

If the heat released during condensation goes only to warming the iron block, what is the final temperature (in ∘C) of the iron

block? (Assume a constant enthalpy of vaporization for water of 44.0 kJ/mol and a heat capacity for iron of 0.449 J⋅g−1⋅∘C−1.)
Chemistry
1 answer:
OLga [1]2 years ago
6 0

Answer:

91°C

Explanation:

CHECK THE COMPLETE QUESTION BELOW;

Suppose that 0.95 g of water condenses on a 75.0 g block of iron that is initially at 22 °c. if the heat released during condensation is used only to warm the iron block, what is the final temperature (in °c) of the iron block? (assume a constant enthalpy of vaporization for water of 44.0 kj/mol.)

Heat capacity which is the amount of heat required to raise the temperature of an object or a substance by one degree

From the question, it was said that that 0.95 g of water condenses on the block thenwe know that Heat evolved during condensation is equal to the heat absorbed by iron block.

Then number of moles =given mass/ molecular mass

Molecular mass of water= 18 g/mol

Given mass= 0.95 g

( 0.95 g/18 g/mol)

= 0.053 moles

Then Heat evolved during condensation = moles of water x Latent heat of vaporization

Q= heat absorbed or released

H=enthalpy of vaporization for water

n= number of moles

Q=nΔH

Q = 0.053 moles x 44.0 kJ/mol

= 2.322 Kj

=2322J

We can now calculate Heat gained by Iron block

Q = mCΔT

m = mass of substance

c = specific heat capacity

=change in temperature

m = 75 g

c = 0.450 J/g/°C

If we substitute into the above formula we have

Q= 75 x 0.450 x ΔT

2322 = 75 x 0.450 x ΔT

ΔT = 68.8°C

Since we know the difference in temperature, we can calculate the final temperature

ΔT = T2 - T1

T1= Initial temperature = 22°C

T2= final temperature

ΔT= change in temperature

T2 = T1+ ΔT

= 68.8 + 22

= 90.8 °C

=91°C

Therefore, final temperature is 91°C

You might be interested in
Which of the compounds above are strong enough acids to react almost completely with a hydroxide ion (pka of h2o = 15.74) or wit
luda_lava [24]

The compounds can react with OH⁻ and HCO₃⁻ only C₅H₆N pyridinium

<h3><em>Further explanation </em></h3>

In an acid-base reaction, it can be determined whether or not a reaction occurs by knowing the value of pKa or Ka from acid and conjugate acid (acid from the reaction)

Acids and bases according to Bronsted-Lowry

Acid = donor (donor) proton (H + ion)

Base = proton (receiver) acceptor (H + ion)

If the acid gives (H +), then the remaining acid is a conjugate base because it accepts protons. Conversely, if a base receives (H +), then the base formed can release protons and is called the conjugate acid from the original base.

From this, it can be seen whether the acid in the product can give its proton to a base (or acid which has a lower Ka value) so that the reaction can go to the right to produce the product.

The step that needs to be done is to know the pKa value of the two acids (one on the left side and one on the right side of the arrow), then just determine the value of the equilibrium constant

Can be formulated:

K acid-base reaction = Ka acid on the left : K acid on the right.

or:

pK = acid pKa on the left - pKa acid on the right

K = equilibrium constant for acid-base reactions

pK = -log K;

K~=~10^{-pK}

K value> 1 indicates the reaction can take place, or the position of equilibrium to the right.

There is some data that we need to complete from the problem above, which is the pKa value of some compounds that will react, namely:

pyridinium pKa = 5.25

acetone pKa = 19.3

butan-2-one pKa = 19

Let's look at the K value of each possible reaction:

pka H₂O = 15.74, pka of H₂CO₃ = 6.37)

  • 1. C₅H₆N pyridinium

* with OH⁻

C₅H₆N + OH- ---> C₅H₅N- + H₂O

pK = pKa pyridinium - pKa H₂O

pK = 5.25 - 15.74

pK = -10.49

K~=~10^{4.9}

K values> 1 indicate the reaction can take place

* with HCO3⁻

C₅H₆N + HCO₃⁻-- ---> C₅H₅N⁻ + H₂CO₃

pK = 5.25 - 6.37

pK = -1.12

K`=~10^{1.12]

Reaction can take place

  • 2. Acetone C₃H₆O

* with OH-

C₃H₆O + OH⁻ ---> C₃H₅O- + H₂O

pK = 19.3 - 15.74

pK = 3.56

K~=~10^{ -3.56}

Reaction does not happen

* with HCO₃-

C₃H₆O + HCO₃⁻ ----> C₃H₅O⁻ + H₂CO₃

pK = 19.3 - 6.37

pK = 12.93

K`=~10 ^{-12.93}

Reaction does not happen

  • 3. butan-2-one C₄H₇O

* with OH-

C₄H₇O + OH- ---> C₄H₆O- + H₂O

pK = 19 - 15.74

pK = 3.26

K~=~10^{-3.26}

Reaction does not happen

* with HCO₃⁻

C₄H₇O + HCO₃⁻ ---> C₄H₆O⁻ + H₂CO₃

pK = 19 - 6.37

pK = 12.63

K~=~ 10^{-12.63}

Reaction does not happen

So that can react with OH⁻ and HCO₃⁻ only C₅H₆N pyridinium

<h3><em>Learn more </em></h3>

the lowest ph

brainly.com/question/9875355

the concentrations at equilibrium.

brainly.com/question/8918040

the ph of a solution

brainly.com/question/9560687

Keywords : acid base reaction, the equilibrium constant

5 0
2 years ago
Read 2 more answers
describe the energy inputs and outputs for the campfire. Use the law of conservation of energy to construct a valid qualitative
-Dominant- [34]

Answer:

The essence including its particular subject is outlined in the following portion mostly on clarification.

Explanation:

  • The energy throughout the campfire comes from either the wood's latent chemical energy until it has been burned to steam up and launch up across the campfire. The electricity generation for something like a campfire seems to be in the context including its potential chemical energy which is contained throughout the firewood used only to inflame the situation.
  • The energy output seems to be in the different types of heat energy radiating across the campfire, laser light generated off by the blaze, and perhaps a little number of electrical waves, registered throughout the firewood cracking whilst they combust throughout the blaze.

and,

chemical energy ⇒ heat energy + light energy + sound energy

6 0
2 years ago
How many ethyne molecules are contained in 84.3 grams of ethyne (C2H2)?
ololo11 [35]
(~26grams/mole) and Avogadros # (6.022x10^23) 84.3grams x 1mole/26grams x 6.022x10^23 molecules/mole = 1.95x10^24 molecules of C2H2
6 0
2 years ago
Read 2 more answers
If consumers pay $15 for an apple pie from Lake Huron Pie Company and the cost “from field to table” of the pie is $10, which of
Novosadov [1.4K]
The answer you are looking for is d
7 0
2 years ago
Read 2 more answers
Complete this sentence. If volume remains the same while the mass of a substance ________, the density of the substance will____
anygoal [31]
If volume remains the same while the mass of a substance increases, the density of the substance will increase.
So if the volume remains the same while the mass of a substance decreases, the density of the substance will decrease, too.
8 0
2 years ago
Read 2 more answers
Other questions:
  • Salim takes 100 g of water each in four identical containers P, Q, R and S and mixes the following in them. 5 g of salt in conta
    15·1 answer
  • A certain atom has 22 protons and 19 electrons. This atom loses an electron. The net charge on the atom is now . If this same at
    7·1 answer
  • Andrew plays trumpet in the concert band. He holds the trumpet still at his side until it is time for him to play. When it is ti
    14·2 answers
  • What is the mass of 2.15 liters of N2 gas at STP?
    12·1 answer
  • Classify these properties of the metal lithium as physical or chemical. Physical Chemical light enough to float on water silvery
    7·2 answers
  • The frequency factors for these two reactions are very close to each other in value. Assuming that they are the same, compute th
    9·1 answer
  • 1 Ca (s) + 2 HF (aq) → 1 CaF2 (s) +1 H2 (g) Identify the coefficient(s). Identify the subscript(s). What is the state of each of
    15·1 answer
  • Water at the bottom of a narrow metal tube is held at a constant temperature of 293 K. The total pressure of air (assumed dry) i
    13·1 answer
  • A compound has the name iodine pentafluoride. What kind of bond is present between the atoms? A. O Metallic B Covalent C. Hydrog
    8·1 answer
  • a chemist uses hot hydrogen gas to convert chromium (iii) oxide to pure chromium. how many grams of hydrogen are needed to produ
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!