answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
1 year ago
5

If the heat released during condensation goes only to warming the iron block, what is the final temperature (in ∘C) of the iron

block? (Assume a constant enthalpy of vaporization for water of 44.0 kJ/mol and a heat capacity for iron of 0.449 J⋅g−1⋅∘C−1.)
Chemistry
1 answer:
OLga [1]1 year ago
6 0

Answer:

91°C

Explanation:

CHECK THE COMPLETE QUESTION BELOW;

Suppose that 0.95 g of water condenses on a 75.0 g block of iron that is initially at 22 °c. if the heat released during condensation is used only to warm the iron block, what is the final temperature (in °c) of the iron block? (assume a constant enthalpy of vaporization for water of 44.0 kj/mol.)

Heat capacity which is the amount of heat required to raise the temperature of an object or a substance by one degree

From the question, it was said that that 0.95 g of water condenses on the block thenwe know that Heat evolved during condensation is equal to the heat absorbed by iron block.

Then number of moles =given mass/ molecular mass

Molecular mass of water= 18 g/mol

Given mass= 0.95 g

( 0.95 g/18 g/mol)

= 0.053 moles

Then Heat evolved during condensation = moles of water x Latent heat of vaporization

Q= heat absorbed or released

H=enthalpy of vaporization for water

n= number of moles

Q=nΔH

Q = 0.053 moles x 44.0 kJ/mol

= 2.322 Kj

=2322J

We can now calculate Heat gained by Iron block

Q = mCΔT

m = mass of substance

c = specific heat capacity

=change in temperature

m = 75 g

c = 0.450 J/g/°C

If we substitute into the above formula we have

Q= 75 x 0.450 x ΔT

2322 = 75 x 0.450 x ΔT

ΔT = 68.8°C

Since we know the difference in temperature, we can calculate the final temperature

ΔT = T2 - T1

T1= Initial temperature = 22°C

T2= final temperature

ΔT= change in temperature

T2 = T1+ ΔT

= 68.8 + 22

= 90.8 °C

=91°C

Therefore, final temperature is 91°C

You might be interested in
How many simple distillation columns are required to purify a stream containing five components into five 'pure"products? Sketch
Nitella [24]

Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products

Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.

For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.

Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.

Repeat the same process for C and D.

After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.

SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE

3 0
1 year ago
At which temperature do the molecules of an ideal gas have 3 times the kinetic energy they have at 32of?
algol [13]

Answer:

  • 820 K

Explanation:

As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.

  • KE α T.

Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>

So, you must just convert the given temperature, 32°F, to kelvin scale.

You can do that in two stages.

  • First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80

  • Second, convert 0°C to kelvin:

         T (K) = T(°C) + 273.15 K= 273.15 K

Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K

Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.

7 0
1 year ago
A sample of gas initially occupies 3.35 L at a pressure of 0.950 atm at 13.0oC. What will the volume (in L) be if the temperatur
Marat540 [252]

Answer: V= 3.13 L

Explanation: solution attached:

Use combine gas law equation:

P1 V1 / T1 = P2 V2/ T2

Derive to find V2

V2 = P1 V1 T2 / T1 P2

Convert temperatures in K

T1= 13.0°C + 273 = 286 K

T2= 22.5°C + 273 = 295.5 K

Substitute the values.

4 0
2 years ago
The volume of distilled water that should be added to 10.0 mL of 6.00 M HCl(aq) in order to prepare a 0.500 M HCl(aq) solution i
bija089 [108]

Answer:

110ml

Explanation:

<em>Using the dilution equation, C1V1 = C2V2</em>

<em>Where C1 is the initial concentration of solution</em>

<em>C2 is final concentration of solution</em>

<em>V1 is intital volume of solution</em>

<em>V2 is final volume of solution.</em>

From the question , C1=6M, C2=0.5M, V1=10ml, V2=?

V2 =\frac{C1V1}{C2}

V2 =\frac{10*6}{0.5}

V2 =120ml

volume of water added = final volume -initial volume

                                    = 120-10

                                   =110ml

3 0
2 years ago
Magnesium burns in air with a dazzling brilliance to produce magnesium oxide: 2Mg (s) + O2 (g) →→ 2MgO (s) When 4.50 g of magnes
Klio2033 [76]

Answer:

7.46 g

Explanation:

From the balanced equation, 2 moles of Mg is required for 2 moles of MgO.

The mole ratio is 1:1

mole = mass/molar mass

mole of 4.50 g Mg = 4.50/24.3 = 0.185 mole

0.185 mole Mg will tiled 0.185 MgO

Hence, theoretical yield of MgO in g

mass = mole x molar mass

            0.185 x 40.3 = 7.46 g

6 0
2 years ago
Read 2 more answers
Other questions:
  • The wavelength of light is 310. nm; calculate the frequency.
    6·2 answers
  • A single cell undergoes mitosis every five minutes. How many cells will result from this cell in 15 minutes? In 30 minutes?
    13·2 answers
  • A student is given the question: "what is the mass of a gold bar that is 7.379 × 10–4 m3 in volume? the density of gold is 19.3
    8·2 answers
  • in the early studies of chemistry, scientists used properties and changed to help identify compounds. this is still done today.
    9·1 answer
  • Jeremy had a set of 500 toy blocks that could be connected by snapping them together. At first, he used all the blocks to build
    9·2 answers
  • If you are launching a matchstick rocket, the action force is the rocket pushing the gases down. what is the reaction force
    11·1 answer
  • A goldsmith melts 12.4 grams of gold to make a ring. The temperature of the gold rises from 26°C to 1064°C, and then the gold me
    15·1 answer
  • PLEASE ASSIST MEEEEEEE!!!!!!!!! 40 POINTS
    13·1 answer
  • Some scientists believe that life on Earth may have originated near deep-ocean vents. Balance the following reactions, which are
    11·2 answers
  • What is the molecular formula for Heptachlorine hexoxide?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!